結果
| 問題 | 
                            No.1320 Two Type Min Cost Cycle
                             | 
                    
| コンテスト | |
| ユーザー | 
                             emthrm
                         | 
                    
| 提出日時 | 2020-12-19 15:45:18 | 
| 言語 | C++17  (gcc 13.3.0 + boost 1.87.0)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 361 ms / 2,000 ms | 
| コード長 | 4,742 bytes | 
| コンパイル時間 | 2,230 ms | 
| コンパイル使用メモリ | 214,548 KB | 
| 最終ジャッジ日時 | 2025-01-17 03:52:12 | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge2 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 57 | 
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;
template <typename CostType>
struct Edge {
  int src, dst; CostType cost;
  Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {}
  inline bool operator<(const Edge &x) const {
    return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src;
  }
  inline bool operator<=(const Edge &x) const { return !(x < *this); }
  inline bool operator>(const Edge &x) const { return x < *this; }
  inline bool operator>=(const Edge &x) const { return !(*this < x); }
};
template <typename CostType>
CostType girth_in_directed_graph(const std::vector<std::vector<Edge<CostType>>> &graph, const CostType CINF) {
  int n = graph.size();
  CostType res = CINF;
  std::vector<CostType> dist(n);
  using Pci = std::pair<CostType, int>;
  std::priority_queue<Pci, std::vector<Pci>, std::greater<Pci>> que;
  for (int root = 0; root < n; ++root) {
    std::fill(dist.begin(), dist.end(), CINF);
    dist[root] = 0;
    que.emplace(0, root);
    while (!que.empty()) {
      CostType cost; int ver; std::tie(cost, ver) = que.top(); que.pop();
      if (dist[ver] < cost) continue;
      for (const Edge<CostType> &e : graph[ver]) {
        CostType cost = dist[ver] + e.cost;
        if (cost < dist[e.dst]) {
          dist[e.dst] = cost;
          que.emplace(cost, e.dst);
        } else if (e.dst == root) {
          if (cost < res) res = cost;
        }
      }
    }
  }
  return res;
}
template <typename CostType>
CostType girth_in_undirected_graph(int n, const std::vector<Edge<CostType>> &edges, const CostType CINF) {
  int m = edges.size();
  std::vector<std::vector<int>> graph(n);
  for (int i = 0; i < m; ++i) {
    graph[edges[i].src].emplace_back(i);
    graph[edges[i].dst].emplace_back(i);
  }
  std::vector<bool> used(m, false);
  std::vector<CostType> dist(n);
  std::vector<int> label(n), prev(n);
  using Pci = std::pair<CostType, int>;
  std::priority_queue<Pci, std::vector<Pci>, std::greater<Pci>> que;
  CostType res = CINF;
  for (int root = 0; root < n; ++root) {
    std::fill(used.begin(), used.end(), false);
    std::fill(dist.begin(), dist.end(), CINF);
    dist[root] = 0;
    std::fill(label.begin(), label.end(), -2);
    label[root] = -1;
    std::fill(prev.begin(), prev.end(), -1);
    que.emplace(0, root);
    while (!que.empty()) {
      CostType c; int ver; std::tie(c, ver) = que.top(); que.pop();
      if (dist[ver] < c) continue;
      for (int id : graph[ver]) {
        int dst = edges[id].src == ver ? edges[id].dst : edges[id].src;
        CostType cost = dist[ver] + edges[id].cost;
        if (cost < dist[dst]) {
          dist[dst] = cost;
          label[dst] = label[ver] == -1 ? dst : label[ver];
          if (prev[dst] != -1) used[dst] = true;
          used[id] = true;
          que.emplace(cost, dst);
        }
      }
    }
    for (int i = 0; i < m; ++i) {
      int src = edges[i].src, dst = edges[i].dst;
      CostType cost = edges[i].cost;
      if (!used[i] && label[src] != -2 && label[dst] != -2) {
        if (label[src] != label[dst]) {
          CostType loop = dist[src] + dist[dst] + cost;
          if (loop < res) res = loop;
        } else if (label[src] == -1) {
          if (cost < res) res = cost;
        }
      }
    }
  }
  return res;
}
int main() {
  int t, n, m; cin >> t >> n >> m;
  if (t == 0) {
    vector<Edge<ll>> edges;
    while (m--) {
      int u, v, w; cin >> u >> v >> w; --u; --v;
      edges.emplace_back(u, v, w);
    }
    ll ans = girth_in_undirected_graph(n, edges, LINF);
    cout << (ans == LINF ? -1 : ans) << '\n';
  } else if (t == 1) {
    vector<vector<Edge<ll>>> graph(n);
    while (m--) {
      int u, v, w; cin >> u >> v >> w; --u; --v;
      graph[u].emplace_back(u, v, w);
    }
    ll ans = girth_in_directed_graph(graph, LINF);
    cout << (ans == LINF ? -1 : ans) << '\n';
  }
  return 0;
}
            
            
            
        
            
emthrm