結果
| 問題 |
No.215 素数サイコロと合成数サイコロ (3-Hard)
|
| コンテスト | |
| ユーザー |
beet
|
| 提出日時 | 2020-12-19 16:28:52 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,632 ms / 4,000 ms |
| コード長 | 7,678 bytes |
| コンパイル時間 | 2,371 ms |
| コンパイル使用メモリ | 219,800 KB |
| 最終ジャッジ日時 | 2025-01-17 03:53:27 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 2 |
ソースコード
// verification-helper: PROBLEM https://yukicoder.me/problems/444
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
template<typename T, T MOD = 1000000007>
struct Mint{
static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;}
Mint operator-(Mint a) const{return Mint(v)-=a;}
Mint operator*(Mint a) const{return Mint(v)*=a;}
Mint operator/(Mint a) const{return Mint(v)/=a;}
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
bool operator <(const Mint a)const{return v <a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T, T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T, T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
namespace FFT{
using dbl = double;
struct num{
dbl x,y;
num(){x=y=0;}
num(dbl x,dbl y):x(x),y(y){}
};
inline num operator+(num a,num b){
return num(a.x+b.x,a.y+b.y);
}
inline num operator-(num a,num b){
return num(a.x-b.x,a.y-b.y);
}
inline num operator*(num a,num b){
return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
inline num conj(num a){
return num(a.x,-a.y);
}
int base=1;
vector<num> rts={{0,0},{1,0}};
vector<int> rev={0,1};
const dbl PI=asinl(1)*2;
void ensure_base(int nbase){
if(nbase<=base) return;
rev.resize(1<<nbase);
for(int i=0;i<(1<<nbase);i++)
rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1));
rts.resize(1<<nbase);
while(base<nbase){
dbl angle=2*PI/(1<<(base+1));
for(int i=1<<(base-1);i<(1<<base);i++){
rts[i<<1]=rts[i];
dbl angle_i=angle*(2*i+1-(1<<base));
rts[(i<<1)+1]=num(cos(angle_i),sin(angle_i));
}
base++;
}
}
void fft(vector<num> &as){
int n=as.size();
assert((n&(n-1))==0);
int zeros=__builtin_ctz(n);
ensure_base(zeros);
int shift=base-zeros;
for(int i=0;i<n;i++)
if(i<(rev[i]>>shift))
swap(as[i],as[rev[i]>>shift]);
for(int k=1;k<n;k<<=1){
for(int i=0;i<n;i+=2*k){
for(int j=0;j<k;j++){
num z=as[i+j+k]*rts[j+k];
as[i+j+k]=as[i+j]-z;
as[i+j]=as[i+j]+z;
}
}
}
}
template<typename T>
vector<long long> multiply(vector<T> &as,vector<T> &bs){
int need=as.size()+bs.size()-1;
int nbase=0;
while((1<<nbase)<need) nbase++;
ensure_base(nbase);
int sz=1<<nbase;
vector<num> fa(sz);
for(int i=0;i<sz;i++){
T x=(i<(int)as.size()?as[i]:0);
T y=(i<(int)bs.size()?bs[i]:0);
fa[i]=num(x,y);
}
fft(fa);
num r(0,-0.25/sz);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r;
if(i!=j)
fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r;
fa[i]=z;
}
fft(fa);
vector<long long> res(need);
for(int i=0;i<need;i++)
res[i]=round(fa[i].x);
return res;
}
};
template<typename T>
struct ArbitraryMod{
using dbl=FFT::dbl;
using num=FFT::num;
vector<T> multiply(vector<T> as,vector<T> bs){
int need=as.size()+bs.size()-1;
int sz=1;
while(sz<need) sz<<=1;
vector<num> fa(sz),fb(sz);
for(int i=0;i<(int)as.size();i++)
fa[i]=num(as[i].v&((1<<15)-1),as[i].v>>15);
for(int i=0;i<(int)bs.size();i++)
fb[i]=num(bs[i].v&((1<<15)-1),bs[i].v>>15);
fft(fa);fft(fb);
dbl ratio=0.25/sz;
num r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num a1=(fa[i]+conj(fa[j]));
num a2=(fa[i]-conj(fa[j]))*r2;
num b1=(fb[i]+conj(fb[j]))*r3;
num b2=(fb[i]-conj(fb[j]))*r4;
if(i!=j){
num c1=(fa[j]+conj(fa[i]));
num c2=(fa[j]-conj(fa[i]))*r2;
num d1=(fb[j]+conj(fb[i]))*r3;
num d2=(fb[j]-conj(fb[i]))*r4;
fa[i]=c1*d1+c2*d2*r5;
fb[i]=c1*d2+c2*d1;
}
fa[j]=a1*b1+a2*b2*r5;
fb[j]=a1*b2+a2*b1;
}
fft(fa);fft(fb);
vector<T> cs(need);
using ll = long long;
for(int i=0;i<need;i++){
ll aa=T(llround(fa[i].x)).v;
ll bb=T(llround(fb[i].x)).v;
ll cc=T(llround(fa[i].y)).v;
cs[i]=T(aa+(bb<<15)+(cc<<30));
}
return cs;
}
};
// construct a charasteristic equation from sequence
// return a monic polynomial in O(n^2)
template<typename T>
vector<T> berlekamp_massey(vector<T> &as){
using Poly = vector<T>;
int n=as.size();
Poly bs({-T(1)}),cs({-T(1)});
T y(1);
for(int ed=1;ed<=n;ed++){
int l=cs.size(),m=bs.size();
T x(0);
for(int i=0;i<l;i++) x+=cs[i]*as[ed-l+i];
bs.emplace_back(0);
m++;
if(x==T(0)) continue;
T freq=x/y;
if(m<=l){
for(int i=0;i<m;i++)
cs[l-1-i]-=freq*bs[m-1-i];
continue;
}
auto ts=cs;
cs.insert(cs.begin(),m-l,T(0));
for(int i=0;i<m;i++) cs[m-1-i]-=freq*bs[m-1-i];
bs=ts;
y=x;
}
for(auto &c:cs) c/=cs.back();
return cs;
}
// Find k-th term of linear recurrence
template<typename T>
struct BostanMori{
using Poly = vector<T>;
using Conv = function<Poly(Poly, Poly)>;
Conv conv;
BostanMori(Conv conv_):conv(conv_){}
Poly sub(Poly as,int odd){
Poly bs((as.size()+!odd)/2);
for(int i=odd;i<(int)as.size();i+=2) bs[i/2]=as[i];
return bs;
}
// as: initial values
// cs: monic polynomial
T build(long long k,Poly as,Poly cs){
reverse(cs.begin(),cs.end());
assert(cs[0]==T(1));
int n=cs.size()-1;
as.resize(n,0);
Poly bs=conv(as,cs);
bs.resize(n);
while(k){
Poly ds(cs);
for(int i=1;i<(int)ds.size();i+=2) ds[i]=-ds[i];
bs=sub(conv(bs,ds),k&1);
cs=sub(conv(cs,ds),0);
k>>=1;
}
return bs[0];
}
};
#undef call_from_test
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
using M = Mint<int>;
using Poly = vector<M>;
ArbitraryMod<M> arb;
auto conv=[&](auto as,auto bs){return arb.multiply(as,bs);};
long long n;
cin>>n;
n--;
int p,c;
cin>>p>>c;
const int d = 606 * 13;
auto calc=[&](int l,vector<int> vs){
int m=vs.size();
vector<Poly> dp(m,Poly(d));
for(int i=0;i<m;i++) dp[i][0]=M(1);
for(int t=0;t<l;t++){
for(int i=0;i<m;i++){
for(int j=d-1;j>=0;j--){
dp[i][j]=0;
if(i) dp[i][j]+=dp[i-1][j];
if(j>=vs[i]) dp[i][j]+=dp[i][j-vs[i]];
}
}
}
return dp.back();
};
Poly cf({M(1)});
cf=conv(cf,calc(p,vector<int>({2,3,5,7,11,13})));
cf=conv(cf,calc(c,vector<int>({4,6,8,9,10,12})));
cf.resize(d,M(0));
Poly dp(d*3,0),as(d*3,0);
dp[0]=M(1);
for(int i=0;i<(int)dp.size();i++){
for(int j=0;j<d&&i+j<(int)dp.size();j++)
dp[i+j]+=dp[i]*cf[j];
for(int j=1;j<d&&i+j<(int)dp.size();j++)
as[i]+=dp[i+j];
}
as.resize(d*2);
BostanMori<M> seq(conv);
cout<<seq.build(n,as,berlekamp_massey(as))<<endl;
return 0;
}
beet