結果
問題 | No.616 へんなソート |
ユーザー | mugen_1337 |
提出日時 | 2020-12-20 17:48:26 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 240 ms / 2,000 ms |
コード長 | 10,603 bytes |
コンパイル時間 | 2,519 ms |
コンパイル使用メモリ | 212,284 KB |
実行使用メモリ | 98,608 KB |
最終ジャッジ日時 | 2024-09-21 11:54:31 |
合計ジャッジ時間 | 10,995 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 218 ms
97,280 KB |
testcase_01 | AC | 227 ms
97,284 KB |
testcase_02 | AC | 229 ms
97,252 KB |
testcase_03 | AC | 237 ms
97,260 KB |
testcase_04 | AC | 227 ms
97,280 KB |
testcase_05 | AC | 230 ms
97,224 KB |
testcase_06 | AC | 226 ms
97,160 KB |
testcase_07 | AC | 221 ms
97,240 KB |
testcase_08 | AC | 226 ms
97,400 KB |
testcase_09 | AC | 224 ms
97,244 KB |
testcase_10 | AC | 224 ms
97,152 KB |
testcase_11 | AC | 222 ms
97,392 KB |
testcase_12 | AC | 223 ms
97,288 KB |
testcase_13 | AC | 240 ms
98,196 KB |
testcase_14 | AC | 221 ms
97,280 KB |
testcase_15 | AC | 221 ms
97,192 KB |
testcase_16 | AC | 222 ms
97,280 KB |
testcase_17 | AC | 227 ms
98,176 KB |
testcase_18 | AC | 231 ms
97,664 KB |
testcase_19 | AC | 231 ms
97,536 KB |
testcase_20 | AC | 220 ms
97,152 KB |
testcase_21 | AC | 221 ms
97,252 KB |
testcase_22 | AC | 224 ms
97,348 KB |
testcase_23 | AC | 225 ms
97,168 KB |
testcase_24 | AC | 223 ms
97,220 KB |
testcase_25 | AC | 218 ms
97,232 KB |
testcase_26 | AC | 225 ms
97,536 KB |
testcase_27 | AC | 224 ms
97,408 KB |
testcase_28 | AC | 234 ms
98,604 KB |
testcase_29 | AC | 240 ms
98,608 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; #define ALL(x) begin(x),end(x) #define rep(i,n) for(int i=0;i<(n);i++) #define debug(v) cout<<#v<<":";for(auto x:v){cout<<x<<' ';}cout<<endl; #define mod 1000000007 using ll=long long; const int INF=1000000000; const ll LINF=1001002003004005006ll; int dx[]={1,0,-1,0},dy[]={0,1,0,-1}; template<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return true;}return false;} template<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return true;}return false;} struct IOSetup{ IOSetup(){ cin.tie(0); ios::sync_with_stdio(0); cout<<fixed<<setprecision(12); } } iosetup; template<typename T> ostream &operator<<(ostream &os,const vector<T>&v){ for(int i=0;i<(int)v.size();i++) os<<v[i]<<(i+1==(int)v.size()?"":" "); return os; } template<typename T> istream &operator>>(istream &is,vector<T>&v){ for(T &x:v)is>>x; return is; } template<ll Mod> struct ModInt{ long long x; ModInt():x(0){} ModInt(long long y):x(y>=0?y%Mod:(Mod-(-y)%Mod)%Mod){} ModInt &operator+=(const ModInt &p){ if((x+=p.x)>=Mod) x-=Mod; return *this; } ModInt &operator-=(const ModInt &p){ if((x+=Mod-p.x)>=Mod)x-=Mod; return *this; } ModInt &operator*=(const ModInt &p){ x=(int)(1ll*x*p.x%Mod); return *this; } ModInt &operator/=(const ModInt &p){ (*this)*=p.inverse(); return *this; } ModInt operator-()const{return ModInt(-x);} ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;} ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;} ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;} ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;} bool operator==(const ModInt &p)const{return x==p.x;} bool operator!=(const ModInt &p)const{return x!=p.x;} ModInt inverse()const{ int a=x,b=Mod,u=1,v=0,t; while(b>0){ t=a/b; swap(a-=t*b,b);swap(u-=t*v,v); } return ModInt(u); } ModInt pow(long long n)const{ ModInt ret(1),mul(x); while(n>0){ if(n&1) ret*=mul; mul*=mul;n>>=1; } return ret; } friend ostream &operator<<(ostream &os,const ModInt &p){return os<<p.x;} friend istream &operator>>(istream &is,ModInt &a){long long t;is>>t;a=ModInt<Mod>(t);return (is);} static int get_mod(){return Mod;} }; using mint=ModInt<mod>; template<int MAX> struct comcalc{ vector<mint> fact,finv,inv; comcalc():fact(MAX),finv(MAX),inv(MAX){ fact[0]=mint(1),fact[1]=mint(1),finv[0]=mint(1),finv[1]=mint(1),inv[1]=mint(1); for(int i=2;i<MAX;i++){ fact[i]=fact[i-1]*mint(i); inv[i]=mint(0)-inv[mod%i]*(mint(mod/i)); finv[i]=finv[i-1]*inv[i]; } } mint com(int n,int k){ if(n<k) return mint(0); if(n<0 or k<0) return mint(0); return fact[n]*(finv[k]*finv[n-k]); } mint fac(int n){ return fact[n]; } // 重複組み合わせ:n種類の物から重複を許し,k個選ぶ mint nHk(int n,int k){ return com(n+k-1,k); } // 玉n区別,箱k区別,各箱1個以上O(k) mint F12_dis_dis_one(int n,int k){ if(n<k)return mint(0); mint ret=0; for(int i=0;i<=k;i++){ mint add=com(k,i)*(mint(i).pow(n)); if((k-i)%2) ret-=add; else ret+=add; } return ret; } /* sum combination(n+x, x), x=l to r https://www.wolframalpha.com/input/?i=sum+combination%28n%2Bx+%2Cx%29%2C+x%3Dl+to+r&lang=ja check n+x < [COM_PRECALC_MAX] */ mint sum_of_comb(int n,int l,int r){ if(l>r)return mint(0); mint ret=mint(r+1)*com(n+r+1,r+1)-mint(l)*com(l+n,l); ret/=mint(n+1); return ret; } }; mint pow_mod(mint x,ll n){ return x.pow(n); } mint inv_mod(mint x){ return x.inverse(); } // O(n) mint fact_mod(ll n){ mint ret=1; for(int i=2;i<=n;i++) ret*=mint(i); return ret; } // O(r) mint comb_mod(ll n,ll r){ if(r>n-r) r=n-r; if(r==0) return 1; mint a=1,b=mint(fact_mod(r)).inverse(); for(int i=0;i<r;i++)a*=mint(n-i); return a*b; } const int MAX=4010000; using cominit=comcalc<MAX>; template<typename T> struct FormalPowerSeries:vector<T>{ using vector<T>::vector; using P=FormalPowerSeries; using MULT=function<P(P,P)>; static MULT &get_mult(){static MULT mult=nullptr;return mult;} static void set_mult(MULT f){get_mult()=f;} void shrink(){while(this->size() and this->back()==T(0)) this->pop_back();} P pre(int sz)const{return P(begin(*this),begin(*this)+min((int)this->size(),sz));} P operator+(const P &rhs)const{return P(*this)+=rhs;} P operator+(const T &rhs)const{return P(*this)+=rhs;} P operator-(const P &rhs)const{return P(*this)-=rhs;} P operator-(const T &rhs)const{return P(*this)-=rhs;} P operator*(const P &rhs)const{return P(*this)*=rhs;} P operator*(const T &rhs)const{return P(*this)*=rhs;} P operator/(const P &rhs)const{return P(*this)/=rhs;} P operator%(const P &rhs)const{return P(*this)%=rhs;} P &operator+=(const P &rhs){ if(rhs.size()>this->size()) this->resize(rhs.size()); for(int i=0;i<(int)rhs.size();i++) (*this)[i]+=rhs[i]; return (*this); } P &operator+=(const T &rhs){ if(this->empty()) this->resize(1); (*this)[0]+=rhs; return (*this); } P &operator-=(const P &rhs){ if(rhs.size()>this->size()) this->resize(rhs.size()); for(int i=0;i<(int)rhs.size();i++) (*this)[i]-=rhs[i]; shrink(); return (*this); } P &operator-=(const T &rhs){ if(this->empty()) this->resize(1); (*this)[0]-=rhs; shrink(); return (*this); } P &operator*=(const T &rhs){ const int n=(int)this->size(); for(int i=0;i<n;i++) (*this)[i]*=rhs; return (*this); } P &operator*=(const P &rhs){ if(this->empty() or rhs.empty()){ this->clear(); return (*this); } assert(get_mult()!=nullptr); return (*this)=get_mult()(*this,rhs); } P &operator%=(const P &rhs){return (*this)-=(*this)/rhs*rhs;} P operator-()const{ P ret(this->size()); for(int i=0;i<(int)this->size();i++) ret[i]=-(*this)[i]; return ret; } P &operator/=(const P &rhs){ if(this->size()<rhs.size()){ this->clear(); return (*this); } int n=(int)this->size()-rhs.size()+1; return (*this)=(rev().pre(n)*rhs.rev().inv(n)); } P operator>>(int sz)const{ if((int)this->size()<=sz) return {}; P ret(*this); ret.erase(ret.begin(),ret.begin()+sz); return ret; } P operator<<(int sz)const{ P ret(*this); ret.insert(ret.begin(),sz,T(0)); return ret; } P rev(int deg=-1)const{ P ret(*this); if(deg!=-1) ret.resize(deg,T(0)); reverse(begin(ret),end(ret)); return ret; } // 微分 P diff()const{ const int n=(int)this->size(); P ret(max(0,n-1)); for(int i=1;i<n;i++) ret[i-1]=(*this)[i]*T(i); return ret; } // 積分 P integral()const{ const int n=(int)this->size(); P ret(n+1); ret[0]=T(0); for(int i=0;i<n;i++) ret[i+1]=(*this)[i]/T(i+1); return ret; } // ref : https://qiita.com/hotman78/items/f0e6d2265badd84d429a P inv(int deg=-1)const{ assert(((*this)[0])!=T(0)); const int n=(int)this->size(); if(deg==-1) deg=n; P ret({T(1)/(*this)[0]}); for(int i=1;i<deg;i<<=1) ret=(ret+ret-ret*ret*pre(i<<1)).pre(i<<1); return ret.pre(deg); } // ? P log(int deg=-1)const{ assert((*this)[0]==1); const int n=(int)this->size(); if(deg==-1) deg=n; return (this->diff()*this->inv(deg)).pre(deg-1).integral(); } // ? P exp(int deg=-1)const{ assert((*this)[0]==T(0)); const int n=(int)this->size(); if(deg==-1) deg=n; P ret({T(1)}); for(int i=1;i<deg;i<<=1) ret=(ret*(pre(i<<1)+T(1)-ret.log(i<<1))).pre(i<<1); return ret.pre(deg); } // O(nlogn) with NTT // P pow_fast(long long k,int deg=-1){ int n=(int)this->size(); if(deg==-1) deg=n; for(int i=0;i<n;i++){ if((*this)[i]!=T(0)){ T rev=T(1)/(*this)[i]; P ret=(((*this*rev)>>i).log()*k).exp()*((*this)[i].pow(k)); if(i*k>deg) return P(deg,T(0)); ret=(ret<<(i*k)).pre(deg); if((int)ret.size()<deg) ret.resize(deg,T(0)); return ret; } } return *this; } // O(Mult * log k) // resize not verified P pow(ll k,int deg=-1){ if(deg==-1) deg=1000000000; P ret=P{1}; P b(*this); while(k){ if(k&1) ret*=b; b=b*b; k>>=1; if((int)ret.size()>deg) ret.resize(deg); if((int)b.size()>deg) b.resize(deg); } return ret; } // [l,r) k個飛び P slice(int l,int r,int k=1){ P ret; for(int i=l;i<r;i+=k) ret.push_back((*this)[i]); return ret; } /* ref : https://atcoder.jp/contests/aising2020/submissions/15300636 http://q.c.titech.ac.jp/docs/progs/polynomial_division.html order : O(M(d)log(k)) (M(d) -> d次元,multiplyの計算量) return : [x^k] (*this) / q */ T nth_term(P q,ll k){ if(k==0) return (*this)[0]/q[0]; P p(*this),q_=q; for(int i=1;i<(int)q_.size();i+=2) q_[i]*=-1; q*=q_;p*=q_;// qは奇数項が消える return p.slice(k%2,p.size(),2).nth_term(q.slice(0,q.size(),2),k/2); } }; using FPS=FormalPowerSeries<mint>; auto multiply_naive(const FPS::P &lhs,const FPS::P &rhs){ assert(!lhs.empty() and !rhs.empty()); auto ret=FPS(int(lhs.size())+int(rhs.size())-1); rep(i,(int)lhs.size())rep(j,(int)rhs.size()) ret[i+j]+=lhs[i]*rhs[j]; return ret; } signed main(){ FPS::set_mult(multiply_naive); cominit F; int n,k;cin>>n>>k; rep(i,n){int a;cin>>a;} FPS P{1}; rep(i,n) P-=(P<<(i+1)); mint res=0; rep(i,k+1){ res+=P[i]*F.com(k+n-i,n); } cout<<res<<endl; return 0; }