結果
問題 | No.616 へんなソート |
ユーザー |
![]() |
提出日時 | 2020-12-20 17:48:26 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 205 ms / 2,000 ms |
コード長 | 10,603 bytes |
コンパイル時間 | 2,116 ms |
コンパイル使用メモリ | 204,608 KB |
最終ジャッジ日時 | 2025-01-17 04:53:27 |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 |
ソースコード
#include<bits/stdc++.h>using namespace std;#define ALL(x) begin(x),end(x)#define rep(i,n) for(int i=0;i<(n);i++)#define debug(v) cout<<#v<<":";for(auto x:v){cout<<x<<' ';}cout<<endl;#define mod 1000000007using ll=long long;const int INF=1000000000;const ll LINF=1001002003004005006ll;int dx[]={1,0,-1,0},dy[]={0,1,0,-1};template<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return true;}return false;}template<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return true;}return false;}struct IOSetup{IOSetup(){cin.tie(0);ios::sync_with_stdio(0);cout<<fixed<<setprecision(12);}} iosetup;template<typename T>ostream &operator<<(ostream &os,const vector<T>&v){for(int i=0;i<(int)v.size();i++) os<<v[i]<<(i+1==(int)v.size()?"":" ");return os;}template<typename T>istream &operator>>(istream &is,vector<T>&v){for(T &x:v)is>>x;return is;}template<ll Mod>struct ModInt{long long x;ModInt():x(0){}ModInt(long long y):x(y>=0?y%Mod:(Mod-(-y)%Mod)%Mod){}ModInt &operator+=(const ModInt &p){if((x+=p.x)>=Mod) x-=Mod;return *this;}ModInt &operator-=(const ModInt &p){if((x+=Mod-p.x)>=Mod)x-=Mod;return *this;}ModInt &operator*=(const ModInt &p){x=(int)(1ll*x*p.x%Mod);return *this;}ModInt &operator/=(const ModInt &p){(*this)*=p.inverse();return *this;}ModInt operator-()const{return ModInt(-x);}ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;}ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;}ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;}ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;}bool operator==(const ModInt &p)const{return x==p.x;}bool operator!=(const ModInt &p)const{return x!=p.x;}ModInt inverse()const{int a=x,b=Mod,u=1,v=0,t;while(b>0){t=a/b;swap(a-=t*b,b);swap(u-=t*v,v);}return ModInt(u);}ModInt pow(long long n)const{ModInt ret(1),mul(x);while(n>0){if(n&1) ret*=mul;mul*=mul;n>>=1;}return ret;}friend ostream &operator<<(ostream &os,const ModInt &p){return os<<p.x;}friend istream &operator>>(istream &is,ModInt &a){long long t;is>>t;a=ModInt<Mod>(t);return (is);}static int get_mod(){return Mod;}};using mint=ModInt<mod>;template<int MAX>struct comcalc{vector<mint> fact,finv,inv;comcalc():fact(MAX),finv(MAX),inv(MAX){fact[0]=mint(1),fact[1]=mint(1),finv[0]=mint(1),finv[1]=mint(1),inv[1]=mint(1);for(int i=2;i<MAX;i++){fact[i]=fact[i-1]*mint(i);inv[i]=mint(0)-inv[mod%i]*(mint(mod/i));finv[i]=finv[i-1]*inv[i];}}mint com(int n,int k){if(n<k) return mint(0);if(n<0 or k<0) return mint(0);return fact[n]*(finv[k]*finv[n-k]);}mint fac(int n){return fact[n];}// 重複組み合わせ:n種類の物から重複を許し,k個選ぶmint nHk(int n,int k){return com(n+k-1,k);}// 玉n区別,箱k区別,各箱1個以上O(k)mint F12_dis_dis_one(int n,int k){if(n<k)return mint(0);mint ret=0;for(int i=0;i<=k;i++){mint add=com(k,i)*(mint(i).pow(n));if((k-i)%2) ret-=add;else ret+=add;}return ret;}/* sum combination(n+x, x), x=l to rhttps://www.wolframalpha.com/input/?i=sum+combination%28n%2Bx+%2Cx%29%2C+x%3Dl+to+r&lang=jacheck n+x < [COM_PRECALC_MAX] */mint sum_of_comb(int n,int l,int r){if(l>r)return mint(0);mint ret=mint(r+1)*com(n+r+1,r+1)-mint(l)*com(l+n,l);ret/=mint(n+1);return ret;}};mint pow_mod(mint x,ll n){return x.pow(n);}mint inv_mod(mint x){return x.inverse();}// O(n)mint fact_mod(ll n){mint ret=1;for(int i=2;i<=n;i++) ret*=mint(i);return ret;}// O(r)mint comb_mod(ll n,ll r){if(r>n-r) r=n-r;if(r==0) return 1;mint a=1,b=mint(fact_mod(r)).inverse();for(int i=0;i<r;i++)a*=mint(n-i);return a*b;}const int MAX=4010000;using cominit=comcalc<MAX>;template<typename T>struct FormalPowerSeries:vector<T>{using vector<T>::vector;using P=FormalPowerSeries;using MULT=function<P(P,P)>;static MULT &get_mult(){static MULT mult=nullptr;return mult;}static void set_mult(MULT f){get_mult()=f;}void shrink(){while(this->size() and this->back()==T(0)) this->pop_back();}P pre(int sz)const{return P(begin(*this),begin(*this)+min((int)this->size(),sz));}P operator+(const P &rhs)const{return P(*this)+=rhs;}P operator+(const T &rhs)const{return P(*this)+=rhs;}P operator-(const P &rhs)const{return P(*this)-=rhs;}P operator-(const T &rhs)const{return P(*this)-=rhs;}P operator*(const P &rhs)const{return P(*this)*=rhs;}P operator*(const T &rhs)const{return P(*this)*=rhs;}P operator/(const P &rhs)const{return P(*this)/=rhs;}P operator%(const P &rhs)const{return P(*this)%=rhs;}P &operator+=(const P &rhs){if(rhs.size()>this->size()) this->resize(rhs.size());for(int i=0;i<(int)rhs.size();i++) (*this)[i]+=rhs[i];return (*this);}P &operator+=(const T &rhs){if(this->empty()) this->resize(1);(*this)[0]+=rhs;return (*this);}P &operator-=(const P &rhs){if(rhs.size()>this->size()) this->resize(rhs.size());for(int i=0;i<(int)rhs.size();i++) (*this)[i]-=rhs[i];shrink();return (*this);}P &operator-=(const T &rhs){if(this->empty()) this->resize(1);(*this)[0]-=rhs;shrink();return (*this);}P &operator*=(const T &rhs){const int n=(int)this->size();for(int i=0;i<n;i++) (*this)[i]*=rhs;return (*this);}P &operator*=(const P &rhs){if(this->empty() or rhs.empty()){this->clear();return (*this);}assert(get_mult()!=nullptr);return (*this)=get_mult()(*this,rhs);}P &operator%=(const P &rhs){return (*this)-=(*this)/rhs*rhs;}P operator-()const{P ret(this->size());for(int i=0;i<(int)this->size();i++) ret[i]=-(*this)[i];return ret;}P &operator/=(const P &rhs){if(this->size()<rhs.size()){this->clear();return (*this);}int n=(int)this->size()-rhs.size()+1;return (*this)=(rev().pre(n)*rhs.rev().inv(n));}P operator>>(int sz)const{if((int)this->size()<=sz) return {};P ret(*this);ret.erase(ret.begin(),ret.begin()+sz);return ret;}P operator<<(int sz)const{P ret(*this);ret.insert(ret.begin(),sz,T(0));return ret;}P rev(int deg=-1)const{P ret(*this);if(deg!=-1) ret.resize(deg,T(0));reverse(begin(ret),end(ret));return ret;}// 微分P diff()const{const int n=(int)this->size();P ret(max(0,n-1));for(int i=1;i<n;i++) ret[i-1]=(*this)[i]*T(i);return ret;}// 積分P integral()const{const int n=(int)this->size();P ret(n+1);ret[0]=T(0);for(int i=0;i<n;i++) ret[i+1]=(*this)[i]/T(i+1);return ret;}// ref : https://qiita.com/hotman78/items/f0e6d2265badd84d429aP inv(int deg=-1)const{assert(((*this)[0])!=T(0));const int n=(int)this->size();if(deg==-1) deg=n;P ret({T(1)/(*this)[0]});for(int i=1;i<deg;i<<=1) ret=(ret+ret-ret*ret*pre(i<<1)).pre(i<<1);return ret.pre(deg);}// ?P log(int deg=-1)const{assert((*this)[0]==1);const int n=(int)this->size();if(deg==-1) deg=n;return (this->diff()*this->inv(deg)).pre(deg-1).integral();}// ?P exp(int deg=-1)const{assert((*this)[0]==T(0));const int n=(int)this->size();if(deg==-1) deg=n;P ret({T(1)});for(int i=1;i<deg;i<<=1) ret=(ret*(pre(i<<1)+T(1)-ret.log(i<<1))).pre(i<<1);return ret.pre(deg);}// O(nlogn) with NTT//P pow_fast(long long k,int deg=-1){int n=(int)this->size();if(deg==-1) deg=n;for(int i=0;i<n;i++){if((*this)[i]!=T(0)){T rev=T(1)/(*this)[i];P ret=(((*this*rev)>>i).log()*k).exp()*((*this)[i].pow(k));if(i*k>deg) return P(deg,T(0));ret=(ret<<(i*k)).pre(deg);if((int)ret.size()<deg) ret.resize(deg,T(0));return ret;}}return *this;}// O(Mult * log k)// resize not verifiedP pow(ll k,int deg=-1){if(deg==-1) deg=1000000000;P ret=P{1};P b(*this);while(k){if(k&1) ret*=b;b=b*b;k>>=1;if((int)ret.size()>deg) ret.resize(deg);if((int)b.size()>deg) b.resize(deg);}return ret;}// [l,r) k個飛びP slice(int l,int r,int k=1){P ret;for(int i=l;i<r;i+=k) ret.push_back((*this)[i]);return ret;}/*ref : https://atcoder.jp/contests/aising2020/submissions/15300636http://q.c.titech.ac.jp/docs/progs/polynomial_division.htmlorder :O(M(d)log(k)) (M(d) -> d次元,multiplyの計算量)return :[x^k] (*this) / q*/T nth_term(P q,ll k){if(k==0) return (*this)[0]/q[0];P p(*this),q_=q;for(int i=1;i<(int)q_.size();i+=2) q_[i]*=-1;q*=q_;p*=q_;// qは奇数項が消えるreturn p.slice(k%2,p.size(),2).nth_term(q.slice(0,q.size(),2),k/2);}};using FPS=FormalPowerSeries<mint>;auto multiply_naive(const FPS::P &lhs,const FPS::P &rhs){assert(!lhs.empty() and !rhs.empty());auto ret=FPS(int(lhs.size())+int(rhs.size())-1);rep(i,(int)lhs.size())rep(j,(int)rhs.size()) ret[i+j]+=lhs[i]*rhs[j];return ret;}signed main(){FPS::set_mult(multiply_naive);cominit F;int n,k;cin>>n>>k;rep(i,n){int a;cin>>a;}FPS P{1};rep(i,n) P-=(P<<(i+1));mint res=0;rep(i,k+1){res+=P[i]*F.com(k+n-i,n);}cout<<res<<endl;return 0;}