結果
問題 | No.1324 Approximate the Matrix |
ユーザー |
![]() |
提出日時 | 2020-12-21 03:09:41 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 7,164 bytes |
コンパイル時間 | 14,241 ms |
コンパイル使用メモリ | 306,988 KB |
最終ジャッジ日時 | 2025-01-17 05:24:03 |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 29 TLE * 13 |
ソースコード
#ifdef ONLINE_JUDGE #pragma GCC target("avx2,avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using i128 = __int128_t; using pii = pair<int, int>; using pll = pair<long long, long long>; template<class T> using vec = vector<T>; template<class T> using vvec = vector<vector<T>>; #define rep(i, n) for (int i = 0; i < (n); i++) #define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--) #define all(x) (x).begin(), (x).end() constexpr char ln = '\n'; istream& operator>>(istream& is, __int128_t& x) { x = 0; string s; is >> s; int n = int(s.size()), it = 0; if (s[0] == '-') it++; for (; it < n; it++) x = (x * 10 + s[it] - '0'); if (s[0] == '-') x = -x; return is; } ostream& operator<<(ostream& os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; deque<int> deq; while (x) deq.emplace_front(x % 10), x /= 10; for (int e : deq) os << e; return os; } template<class T1, class T2> ostream& operator<<(ostream& os, const pair<T1, T2>& p) { return os << "(" << p.first << ", " << p.second << ")"; } template<class T> ostream& operator<<(ostream& os, const vector<T>& v) { os << "{"; for (int i = 0; i < int(v.size()); i++) { if (i) os << ", "; os << v[i]; } return os << "}"; } template<class Container> inline int SZ(Container& v) { return int(v.size()); } template<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); } template<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;} template<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;} inline int topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); } inline int botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); } inline int popcount(ull x) { return __builtin_popcountll(x); } inline int kthbit(ull x, int k) { return (x>>k) & 1; } inline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; } struct in { template <class T> operator T() { T ret; cin >> ret; return ret; } }; inline void print() { cout << "\n"; } template<class T> inline void print(const vector<T>& v) { for (int i = 0; i < int(v.size()); i++) { if (i) cout << " "; cout << v[i]; } print(); } template<class T, class... Args> inline void print(const T& x, const Args& ... args) { cout << x << " "; print(args...); } #ifdef MINATO_LOCAL inline void debug_out() { cerr << endl; } template <class T, class... Args> inline void debug_out(const T& x, const Args& ... args) { cerr << " " << x; debug_out(args...); } #define debug(...) cerr << __LINE__ << " : [" << #__VA_ARGS__ << "] =", debug_out(__VA_ARGS__) #define dump(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl #else #define debug(...) (void(0)) #define dump(x) (void(0)) #endif struct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template<typename TF,typename TC> struct PrimalDual{ struct edge{ int to; TF cap; TC cost; int rev; edge(){} edge(int to,TF cap,TC cost,int rev): to(to),cap(cap),cost(cost),rev(rev){} }; static const TC INF; vector<vector<edge>> G; vector<TC> h,dist; vector<int> prevv,preve; PrimalDual(){} PrimalDual(int N):G(N),h(N),dist(N),prevv(N),preve(N){} void add_edge(int u,int v,TF cap,TC cost) { G[u].emplace_back(v,cap,cost,G[v].size()); G[v].emplace_back(u,0,-cost,G[u].size()-1); } void dijkstra(int s) { struct P { TC first; int second; P(TC first,int second):first(first),second(second){} bool operator<(const P&a) const{return a.first<first;} }; priority_queue<P> que; fill(dist.begin(),dist.end(),INF); dist[s] = 0; que.emplace(dist[s],s); while(!que.empty()) { P p=que.top(); que.pop(); int v = p.second; if(dist[v] < p.first) continue; for(int i = 0; i < (int)G[v].size(); i++) { edge &e = G[v][i]; if(e.cap == 0) continue; if(dist[v]+e.cost+h[v]-h[e.to]<dist[e.to]){ dist[e.to]=dist[v]+e.cost+h[v]-h[e.to]; prevv[e.to]=v; preve[e.to]=i; que.emplace(dist[e.to],e.to); } } } } TC flow(int s,int t,TF f,int &ok){ TC res=0; fill(h.begin(),h.end(),0); while(f>0){ dijkstra(s); if(dist[t] == INF) { ok = 0; return res; } for(int v = 0; v < (int)h.size(); v++) if(dist[v]<INF) h[v]=h[v]+dist[v]; TF d=f; for(int v = t; v != s; v = prevv[v]) d=min(d,G[prevv[v]][preve[v]].cap); f-=d; res = res + h[t]*d; for(int v = t; v != s; v = prevv[v]) { edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } ok = 1; return res; } }; template<typename TF, typename TC> const TC PrimalDual<TF, TC>::INF = numeric_limits<TC>::max()/2; template<typename TF,typename TC> struct NegativeEdge{ PrimalDual<TF, TC> G; vector<TF> fs; TC sum; int S,T; NegativeEdge(){} NegativeEdge(int n):G(n+2),fs(n+2,0),sum(0),S(n),T(n+1){} void use_edge(int u,int v,TF cap,TC cost){ fs[u]-=cap; fs[v]+=cap; sum=sum+cost*cap; } void add_edge(int u,int v,TF cap,TC cost){ if(cost<TC(0)){ use_edge(u,v,cap,cost); swap(u,v); cost=-cost; } G.add_edge(u,v,cap,cost); } TC flow(int &ok){ TF f=0; for(int i=0;i<S;i++){ if(fs[i]>0){ f+=fs[i]; G.add_edge(S,i,+fs[i],TC(0)); } if(fs[i]<0){ G.add_edge(i,T,-fs[i],TC(0)); } } return sum+G.flow(S,T,f,ok); } TC flow(int ts,int tt,TF tf,int &ok){ fs[ts]+=tf; fs[tt]-=tf; return flow(ok); } }; int main() { ll N = in(), K = in(); vec<ll> A(N),B(N); rep(i,N) cin >> A[i]; rep(i,N) cin >> B[i]; vvec<ll> P(N, vec<ll>(N)); rep(i,N) rep(j,N) cin >> P[i][j]; NegativeEdge<ll, ll> g(N*2+2); const int s = N*2; const int t = s+1; rep(i,N) g.add_edge(s,i,A[i],0); rep(i,N) g.add_edge(i+N,t,B[i],0); auto calc=[](ll p, ll q) { return (p-q)*(p-q); }; ll ans = 0; rep(i,N) rep(j,N) { ll cur = calc(P[i][j],0); ans += cur; for (ll k = 1; k <= A[i]; k++) { ll nex = calc(P[i][j],k); g.add_edge(i,j+N,1,nex-cur); cur = nex; } } int ok = 0; ans += g.flow(s,t,K,ok); cout << ans << ln; }