結果
| 問題 |
No.303 割れません
|
| ユーザー |
Min_25
|
| 提出日時 | 2015-11-18 20:31:20 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
WA
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 31,159 bytes |
| コンパイル時間 | 1,877 ms |
| コンパイル使用メモリ | 97,996 KB |
| 実行使用メモリ | 7,384 KB |
| 最終ジャッジ日時 | 2024-09-13 17:00:12 |
| 合計ジャッジ時間 | 21,726 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 13 WA * 1 |
ソースコード
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstdint>
#include <cstdio>
#include <cmath>
#include <cassert>
#include <vector>
#include <string>
// M(n): O(n^2)
using uint32 = uint32_t;
using int64 = int64_t;
using uint64 = uint64_t;
#define HAVE_UINT128
#ifdef HAVE_UINT128
using uint128 = __uint128_t;
using word_t = uint64;
using dword_t = uint128;
#else
using word_t = uint32;
using dword_t = uint64;
#endif
namespace bits {
inline constexpr uint32 pop_count(uint32 n) {
return __builtin_popcount(n);
}
inline constexpr uint32 pop_count(uint64 n) {
return __builtin_popcountll(n);
}
inline constexpr uint32 ctz(uint32 n) {
return __builtin_ctz(n);
}
inline constexpr uint32 ctz(uint64 n) {
return __builtin_ctzll(n);
}
inline constexpr uint32 clz(uint32 n) {
return __builtin_clz(n);
}
inline constexpr uint32 clz(uint64 n) {
return __builtin_clzll(n);
}
#ifdef HAVE_UINT128
inline uint64 floor_div_small(uint128 a, uint64 b) {
uint64 q, r;
__asm__ (
"divq\t%4"
: "=a"(q), "=d"(r)
: "0"(uint64(a)), "1"(uint64(a >> 64)), "rm"(b)
);
return q;
}
#else
inline uint32 floor_div_small(uint64 a, uint32 b) {
uint32 q, r;
__asm__ (
"divl\t%4"
: "=a"(q), "=d"(r)
: "0"(uint32(a)), "1"(uint32(a >> 32)), "rm"(b)
);
return q;
}
#endif
};
struct FastDiv {
FastDiv() {}
FastDiv(word_t n) {
if (n == 1) {
shamt = 0;
magic_num = 1;
} else {
shamt = (8 * sizeof(dword_t)) - 1 - bits::clz(n - 1);
magic_num = bits::floor_div_small((dword_t(1) << shamt) + n - 1, n);
}
mod = n;
}
word_t magic_num;
uint32 shamt;
word_t mod;
};
inline word_t operator / (word_t n, FastDiv d) {
return (dword_t(n) * d.magic_num) >> d.shamt;
}
inline word_t& operator /= (word_t& n, FastDiv d) {
return n = n / d;
}
inline word_t operator % (word_t n, FastDiv d) {
return n - n / d * d.mod;
}
inline word_t& operator %= (word_t& n, FastDiv d) {
return n = n % d;
}
class FastDiv21 {
public:
FastDiv21(word_t n) {
shamt_ = bits::clz(n);
d_ = n << shamt_;
v_ = reciprocal(d_);
};
FastDiv21() {}
word_t divisor() const {
return d_ >> shamt_;
}
static inline void divmod(
dword_t u, FastDiv21 fd, word_t& ret_q, word_t& ret_r) {
u <<= fd.shamt_;
word_t u_hi = u >> (8 * sizeof(word_t));
word_t u_lo = word_t(u);
dword_t q = dword_t(u_hi) * fd.v_ + u;
word_t q_hi = (q >> (8 * sizeof(word_t))) + 1;
word_t r = u_lo - q_hi * fd.d_;
if (r > word_t(q)) {
q_hi -= 1;
r += fd.d_;
}
if (r >= fd.d_) {
q_hi += 1;
r -= fd.d_;
}
ret_q = q_hi;
ret_r = r >> fd.shamt_;
}
static inline word_t div(dword_t u, FastDiv21 fd) {
word_t q, dummy;
divmod(u, fd, q, dummy);
return q;
}
static inline word_t mod(dword_t u, FastDiv21 fd) {
word_t dummy, r;
divmod(u, fd, dummy, r);
return r;
}
private:
word_t reciprocal(word_t n) const {
return bits::floor_div_small(~(dword_t(n) << (sizeof(word_t) * 8)), n);
}
word_t d_;
uint32 shamt_;
word_t v_;
};
static inline word_t operator / (dword_t n, FastDiv21 fd) {
return FastDiv21::div(n, fd);
}
static inline dword_t& operator /= (dword_t& n, FastDiv21 fd) {
return n = n / fd;
}
static inline word_t operator % (dword_t n, FastDiv21 fd) {
return FastDiv21::mod(n, fd);
}
static inline dword_t& operator %= (dword_t& n, FastDiv21 fd) {
return n = n % fd;
}
class BigInt {
public:
struct BaseData {
BaseData(uint32 base, bool lower) : base_s(base), lower(lower) {
fd = FastDiv(base);
word_t lim = (word_t(1) << (W_BITS - 1)) - 1;
base_l = 1;
e = 0;
while (lim >= base_s) {
base_l *= base_s;
lim /= fd;
e += 1;
}
fd21 = FastDiv21(base_l);
}
FastDiv fd;
FastDiv21 fd21;
word_t base_s;
word_t base_l;
uint32 e;
bool lower;
private:
BaseData() {}
};
using container_t = std::vector<word_t>;
enum {
W_BITS = sizeof(word_t) * 8,
STR_THRESHOLD = 1 << 13, // bits
DIVMOD_THRESHOLD = 1 << 13 // bits
};
public:
BigInt() : sign_(0) {
n_ = container_t(1, 0);
}
BigInt(int n) : sign_(n < 0) {
n_ = container_t(1, std::abs(n));
}
BigInt(uint32 n) : sign_(0) {
n_ = container_t(1, n);
}
#ifdef HAVE_UINT128
BigInt(int64 n) : sign_(n < 0) {
n_ = container_t(1, std::abs(n));
}
BigInt(uint64 n) : sign_(0) {
n_ = container_t(1, n);
}
inline operator uint64() const {
uint64 ret = (*this)[0];
if (is_neg()) {
ret = -ret;
}
return ret;
}
#else
BigInt(int64 n) : sign_(n < 0) {
n_ = container_t(2, std::abs(n));
(*this)[0] = n;
(*this)[1] = std::abs(int(n >> W_BITS));
}
BigInt(uint64 n) : sign_(0) {
n_ = container_t(2);
(*this)[0] = n;
(*this)[1] = n >> W_BITS;
}
inline operator uint64() const {
uint64 ret = (size() >= 2 ? ((uint64((*this)[1]) << 32) | (*this)[0]) : (*this)[0]);
if (is_neg()) {
ret = ret;
}
return ret;
}
#endif
BigInt(word_t size, int n) : sign_(n < 0) {
assert(size > 0);
n_ = container_t(size, 0);
n_[0] = n;
}
BigInt(const BigInt& n) {
this->sign_ = n.sign_;
this->n_ = n.n_;
}
// container
inline uint32 size() const {
return n_.size();
}
void push_back(word_t w) {
n_.push_back(w);
}
void resize(uint32 size) {
if (size == 0) {
set_zero();
} else {
n_.resize(size, 0);
}
}
inline word_t operator [] (uint32 idx) const {
return n_[idx];
}
inline word_t& operator [] (uint32 idx) {
return n_[idx];
}
// basic
void change_sign() {
if (!is_zero()) {
sign_ ^= 1;
}
}
void set_sign(int s) {
if (!is_zero()) {
sign_ = s;
}
}
void clear_sign() {
sign_ = 0;
}
bool is_neg() const {
return sign_ == 1;
}
bool is_zero() const {
return size() == 1 && (*this)[0] == 0;
}
// unsigned
bool is_one() const {
return size() == 1 && (*this)[0] == 1;
}
BigInt abs() const {
BigInt ret = BigInt(*this);
ret.clear_sign();
return ret;
}
void set_zero() {
resize(1);
clear_sign();
(*this)[0] = 0;
}
void normalize() {
for (int i = size() - 1; i > 0; --i) {
if ((*this)[i]) {
resize(i + 1);
return;
}
}
resize(1);
if (is_zero()) {
clear_sign();
}
return;
}
uint32 bit_length() const {
if (is_zero()) {
return 0;
}
uint32 len = size();
return W_BITS * len - bits::clz((*this)[len - 1]);
}
uint32 pop_count() const {
uint32 ret = 0;
for (uint32 i = 0; i < this->size(); ++i) {
ret += bits::pop_count((*this)[i]);
}
return ret;
}
static BigInt mask(uint32 bit_length) {
if (bit_length == 0) {
return BigInt();
}
BigInt ret = BigInt();
uint32 ret_size = 1 + (bit_length - 1) / W_BITS;
ret.resize(ret_size);
for (uint32 i = 0; i < ret_size; ++i) {
ret[i] = ~word_t(0);
}
ret[ret_size - 1] &= ~word_t(0) >> ((W_BITS - bit_length) % W_BITS);
return ret;
}
// string
std::string hex(bool lower=true) const {
static const char* chars = lower ? "0123456789abcdef" : "0123456789ABCDEF";
if (is_zero()) {
return "0";
}
std::string ret;
if (sign_) {
ret += "-";
}
word_t h = (*this)[this->size() - 1];
bool pad = false;
for (uint32 j = 0; j < 2 * sizeof(word_t); ++j) {
int d = (h >> (W_BITS - 4 * j - 4)) & 15;
if (d == 0 && !pad) {
continue;
}
pad = true;
ret += chars[d];
}
for (int i = this->size() - 2; i >= 0; --i) {
word_t w = (*this)[i];
for (uint32 j = 0; j < 2 * sizeof(word_t); ++j) {
int d = (w >> (W_BITS - 4 * j - 4)) & 15;
ret += chars[d];
}
}
return ret;
}
std::string str(uint32 base=10, bool lower=true) const {
if (is_zero()) {
return "0";
}
BaseData bdata = BaseData(base, lower);
return _fast_str(bdata);
}
// relational
bool operator == (const BigInt& rhs) const {
if (this->is_neg() ^ rhs.is_neg()) {
return false;
}
if (size() != rhs.size()) {
return false;
}
for (uint32 i = 0; i < rhs.size(); ++i) {
if ((*this)[i] != rhs[i]) {
return false;
}
}
return true;
}
bool operator != (const BigInt& rhs) const {
return !(*this == rhs);
}
bool operator < (const BigInt& rhs) const {
if (this->is_neg()) {
if (!rhs.is_neg()) {
return true;
} else {
return _ucomp(rhs, *this, false);
}
} else {
if (rhs.is_neg()) {
return false;
} else {
return _ucomp(*this, rhs, false);
}
}
}
/* slow */
bool operator < (const int rhs) const {
return *this < BigInt(rhs);
}
#ifndef HAVE_UINT128
/* tmp */
bool operator < (const uint64 rhs) const {
return *this < BigInt(rhs);
}
#endif
bool operator < (const word_t rhs) const {
if (is_neg()) {
return true;
}
return !(size() >= 2) && (*this)[0] < rhs;
}
bool operator <= (const BigInt& rhs) const {
if (this->is_neg()) {
if (!rhs.is_neg()) {
return true;
} else {
return _ucomp(rhs, *this, true);
}
} else {
if (rhs.is_neg()) {
return false;
} else {
return _ucomp(*this, rhs, true);
}
}
}
bool operator <= (const word_t rhs) const {
if (is_neg()) {
return true;
}
return !(size() >= 2) && (*this)[0] <= rhs;
}
bool operator >= (const BigInt& rhs) const {
return rhs <= *this;
}
bool operator >= (const word_t rhs) const {
return !(*this < rhs);
}
bool operator > (const BigInt& rhs) const {
return rhs < *this;
}
bool operator > (const word_t rhs) const {
return !(*this <= rhs);
}
// unary operator
bool operator ! () const {
return is_zero();
}
BigInt operator + () const {
return BigInt(*this);
}
BigInt operator - () const {
BigInt ret = BigInt(*this);
ret.change_sign();
return ret;
}
// arith
BigInt operator + (const BigInt& rhs) const {
return _add(*this, rhs, false);
}
/* slow */
BigInt operator + (const int rhs) const {
return _add(*this, BigInt(rhs), false);
}
BigInt& operator += (const BigInt& rhs) {
return _add_assign(*this, rhs, false);
}
BigInt operator - (const BigInt& rhs) const {
return _add(*this, rhs, true);
}
/* slow */
BigInt operator - (const int rhs) const {
return _add(*this, BigInt(rhs), true);
}
BigInt& operator -= (const BigInt& rhs) {
return _add_assign(*this, rhs, true);
}
BigInt operator * (const BigInt& rhs) const {
BigInt ret;
_mul(*this, rhs, ret);
return ret;
}
BigInt operator * (const word_t rhs) const {
BigInt ret;
_mul1(*this, rhs, ret);
return ret;
}
BigInt& operator *= (const BigInt& rhs) {
return *this = *this * rhs;
}
BigInt& operator *= (const word_t rhs) {
_mul1(*this, rhs, *this);
return *this;
}
BigInt operator / (const BigInt& rhs) const {
BigInt q, r;
divmod(*this, rhs, q, r);
return q;
}
BigInt operator / (const word_t rhs) const {
BigInt ret;
word_t dummy;
divmod_n1(*this, rhs, ret, dummy);
return ret;
}
BigInt operator % (const BigInt& rhs) const {
BigInt q, r;
divmod(*this, rhs, q, r);
return r;
}
word_t operator % (const word_t rhs) const {
BigInt dummy;
word_t ret;
divmod_n1(*this, rhs, dummy, ret);
return ret;
}
static void divmod(const BigInt& a, const BigInt& b, BigInt& q, BigInt& r) {
/* sign */
_fast_udivmod(a, b, q, r);
}
static void divmod_n1(const BigInt& n, const word_t d, BigInt& qs, word_t& r) {
/* sign */
auto fd = FastDiv21(d);
return divmod_n1(n, fd, qs, r);
}
static void divmod_n1(const BigInt& n, const FastDiv21 fd, BigInt& qs, word_t& r) {
const word_t d = fd.divisor();
uint32 size = n.size();
r = n[size - 1];
word_t q = 0;
if (r >= d) {
FastDiv21::divmod(r, fd, q, r);
qs.resize(size);
qs[size - 1] = q;
} else {
qs.resize(size - 1);
}
for (int i = size - 2; i >= 0; --i) {
FastDiv21::divmod((dword_t(r) << W_BITS) | n[i], fd, q, r);
qs[i] = q;
}
}
// logical [unsigned]
BigInt operator & (const BigInt& rhs) const {
if (rhs.size() > size()) {
BigInt ret = BigInt(*this);
_land(ret, rhs);
return ret;
} else {
BigInt ret = BigInt(rhs);
_land(ret, *this);
return ret;
}
}
BigInt operator & (const int rhs) const {
return BigInt((*this)[0] & rhs);
}
BigInt& operator &= (const BigInt& rhs) {
if (size() > rhs.size()) {
resize(rhs.size());
}
_land(*this, rhs);
return *this;
}
BigInt operator ^ (const BigInt& rhs) const {
if (rhs.size() < size()) {
BigInt ret = BigInt(*this);
_lxor(ret, rhs);
return ret;
} else {
BigInt ret = BigInt(rhs);
_lxor(ret, *this);
return ret;
}
}
BigInt& operator ^= (const BigInt& rhs) {
if (size() < rhs.size()) {
resize(rhs.size());
}
_lxor(*this, rhs);
return *this;
}
BigInt operator | (const BigInt& rhs) const {
if (rhs.size() < size()) {
BigInt ret = BigInt(*this);
_lor(ret, rhs);
return ret;
} else {
BigInt ret = BigInt(rhs);
_lor(ret, *this);
return ret;
}
}
BigInt& operator |= (const BigInt& rhs) {
if (size() < rhs.size()) {
resize(rhs.size());
}
_lor(*this, rhs);
return *this;
}
// shift [unsigned]
BigInt operator << (int shamt) const {
if (shamt < 0) {
return *this >> -shamt;
}
if (shamt == 0) {
return BigInt(*this);
}
if (is_zero()) {
return BigInt();
}
BigInt ret = BigInt();
uint32 bit_len = bit_length();
ret.resize(1 + (bit_len - 1 + shamt) / W_BITS);
_lshift(*this, this->size(), shamt, ret, ret.size());
return ret;
}
BigInt operator << (uint32 shamt) const {
return *this << int(shamt);
}
BigInt& operator <<= (int shamt) {
if (shamt < 0) {
return *this >>= -shamt;
}
if (shamt == 0) {
return *this;
}
if (is_zero()) {
return *this;
}
uint32 bit_len = bit_length();
uint32 size = this->size();
this->resize(1 + (bit_len - 1 + shamt) / W_BITS);
_lshift(*this, size, shamt, *this, this->size());
return *this;
}
BigInt& operator <<= (uint32 shamt) {
return *this <<= int(shamt);
}
BigInt operator >> (int shamt) const {
if (shamt < 0) {
return *this << -shamt;
}
if (shamt == 0) {
return BigInt(*this);
}
if (is_zero()) {
return BigInt();
}
uint32 bit_len = bit_length();
if (bit_len <= uint32(shamt)) {
return BigInt();
}
BigInt ret = BigInt();
ret.resize(1 + (bit_len - 1 - shamt) / W_BITS);
_rshift(*this, this->size(), shamt, ret, ret.size());
return ret;
}
BigInt operator >> (uint32 shamt) const {
return *this >> int(shamt);
}
BigInt& operator >>= (int shamt) {
if (shamt < 0) {
return *this <<= -shamt;
}
if (shamt == 0) {
return *this;
}
if (is_zero()) {
return *this;
}
uint32 bit_len = bit_length();
if (bit_len <= uint32(shamt)) {
this->set_zero();
return *this;
}
uint32 ret_size = 1 + (bit_len - 1 - shamt) / W_BITS;
_rshift(*this, this->size(), shamt, *this, ret_size);
this->resize(ret_size);
return *this;
}
BigInt& operator >>= (uint32 shamt) {
return *this >>= int(shamt);
}
// subinteger ? strip ?
BigInt subinteger(const uint32 bit_beg, uint32 bit_end) const {
uint32 bit_len = bit_length();
if (bit_end > bit_len) {
bit_end = bit_len;
}
if (bit_beg >= bit_end) {
return BigInt(0);
}
uint32 bit_size = bit_end - bit_beg;
uint32 ret_size = 1 + (bit_size - 1) / W_BITS;
uint32 in_size = 1 + (bit_end - 1) / W_BITS;
BigInt ret = BigInt(ret_size, 0);
_rshift(*this, in_size, bit_beg, ret, ret_size);
word_t mask = ~word_t(0) >> ((W_BITS - bit_size) % W_BITS);
ret[ret_size - 1] &= mask;
ret.normalize();
return ret;
}
// functions
BigInt isqrt() {
if (is_neg()) {
assert(0);
}
BigInt s, r;
_isqrt(*this, s, r);
return s;
}
static BigInt fib(uint32 n) {
BigInt a, b;
_fib(n, a, b);
return a;
}
static void fib(uint32 n, BigInt& a, BigInt& b) {
_fib(n, a, b);
}
// output
friend std::ostream & operator << (std::ostream& os, const BigInt& n) {
return os << n.str();
}
private:
std::string _ustr(const BaseData& base, uint32 zpad=0) const {
static const char* chars = base.lower
? "0123456789abcdefghijklmnopqrstuvwxyz"
: "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
std::string ret;
BigInt qs = BigInt(*this);
word_t r = 0;
while (qs >= base.base_l) {
divmod_n1(qs, base.fd21, qs, r);
for (uint32 i = 0; i < base.e; ++i) {
word_t s = r / base.fd;
ret += chars[r - s * base.fd.mod];
r = s;
}
}
r = qs[0];
while (r > 0) {
word_t s = r / base.fd;
ret += chars[r - s * base.fd.mod];
r = s;
}
if (zpad && ret.size() < zpad) {
ret.append(zpad - ret.size(), '0');
}
std::reverse(ret.begin(), ret.end());
return ret;
}
static void _fast_str_rec(
const BigInt& n, uint32 e,
const BaseData& base, const std::vector<BigInt>& large_bases,
std::string& ret, bool zpad=false) {
if (e + 1 <= 11) {
ret += n._ustr(base, zpad ? (1 << (e + 1)) : 0);
} else {
BigInt q, r;
divmod(n, large_bases[e], q, r);
if (zpad || !q.is_zero()) {
_fast_str_rec(q, e - 1, base, large_bases, ret, zpad);
_fast_str_rec(r, e - 1, base, large_bases, ret, true);
} else {
_fast_str_rec(r, e - 1, base, large_bases, ret, zpad);
}
}
}
std::string _fast_str(const BaseData& base) const {
std::string ret;
if (is_neg()) {
ret += "-";
}
uint32 bit_len = bit_length();
if (bit_len <= STR_THRESHOLD) {
ret += this->_ustr(base);
return ret;
}
std::vector<BigInt> large_bases;
BigInt base_pow = BigInt(base.base_s);
uint32 e = 0;
while (1) {
large_bases.push_back(base_pow);
if (base_pow.bit_length() * 2 - 1 > bit_len) {
break;
}
e += 1;
base_pow *= base_pow;
}
_fast_str_rec(*this, e, base, large_bases, ret);
return ret;
}
static bool _ucomp(const BigInt& a, const BigInt& b, bool case_eq) {
if (a.size() < b.size()) {
return true;
} else if (a.size() > b.size()) {
return false;
}
for (int i = a.size() - 1; i >= 0; --i) {
if (a[i] != b[i]) {
return a[i] < b[i];
}
}
return case_eq;
}
static bool _shifted_ucomp(const BigInt& a, uint32 ofs, const BigInt& b, bool case_eq) {
// assert(a >= b);
for (int i = b.size() - 1; i >= 0; --i) {
if (a[i + ofs] != b[i]) {
return a[i + ofs] < b[i];
}
}
return case_eq;
}
static void _uadd(BigInt& a, const BigInt& b) {
// assert(a.size() >= b.size());
uint32 i = 0;
dword_t c = 0;
for (; i < b.size(); ++i) {
c = dword_t(a[i]) + b[i] + word_t(c);
a[i] = word_t(c);
c >>= W_BITS;
}
while (c && i < a.size()) {
c += a[i];
a[i++] = word_t(c);
c >>= W_BITS;
}
if (c) {
a.push_back(word_t(c));
}
}
static void _usub(BigInt& a, const BigInt& b) {
// assert(a >= b);
_usub_core(a, b);
a.normalize();
}
static void _usub_core(BigInt& a, const BigInt& b) {
uint32 i = 0;
dword_t c = 0;
for (; i < b.size(); ++i) {
c = dword_t(a[i]) - b[i] - word_t(c);
a[i] = word_t(c);
c = ((c >> W_BITS) >> (W_BITS - 1));
}
while (c && i < a.size()) {
c = dword_t(a[i]) - word_t(c);
a[i++] = word_t(c);
c = ((c >> W_BITS) >> (W_BITS - 1));
}
}
// almost duplicate ...
static void _shifted_usub_core(BigInt& a, uint32 ofs, const BigInt& b) {
// assert(a >= b);
uint32 i = 0;
dword_t c = 0;
for (; i < b.size(); ++i) {
c = dword_t(a[i + ofs]) - b[i] - word_t(c);
a[i + ofs] = word_t(c);
c = ((c >> W_BITS) >> (W_BITS - 1));
}
while (c && i + ofs < a.size()) {
c = dword_t(a[i + ofs]) - c;
a[(i++) + ofs] = word_t(c);
c = ((c >> W_BITS) >> (W_BITS - 1));
}
}
static BigInt& _add_assign(BigInt& a, const BigInt& b, bool is_sub) {
if (a.is_neg() ^ b.is_neg() ^ is_sub) {
if (_ucomp(a, b, true)) {
// :(
BigInt ret = BigInt(b);
_usub(ret, a);
if (is_sub) {
ret.change_sign();
}
a = ret;
} else {
_usub(a, b);
}
} else {
if (a.size() < b.size()) {
a.resize(b.size());
}
_uadd(a, b);
}
return a;
}
static BigInt _add(const BigInt& a, const BigInt& b, bool is_sub) {
if (a.is_neg() ^ b.is_neg() ^ is_sub) {
if (_ucomp(a, b, true)) {
BigInt ret = BigInt(b);
_usub(ret, a);
if (is_sub) {
ret.change_sign();
}
return ret;
} else {
BigInt ret = BigInt(a);
_usub(ret, b);
return ret;
}
} else {
if (a.size() < b.size()) {
BigInt ret = BigInt(b);
_uadd(ret, a);
return ret;
} else {
BigInt ret = BigInt(a);
_uadd(ret, b);
return ret;
}
}
}
static void _mul1(const BigInt& a, const word_t b, BigInt& res) {
int sign = a.is_neg();
_umul1(a, b, res);
res.set_sign(sign);
}
static void _mul(const BigInt& a, const BigInt& b, BigInt &res) {
if (a == b) {
_square(a, res);
} else {
int sign = a.is_neg() ^ b.is_neg();
_umul(a, b, res);
res.set_sign(sign);
}
}
static void _umul1(const BigInt& a, const word_t b, BigInt& res) {
if (a.is_zero() || b == 0) {
res = BigInt();
return;
}
if (b == 1) {
res = BigInt(a);
return;
}
res.resize(a.size());
word_t c = _umul1_core(a, b, res);
if (c) {
res.push_back(c);
}
}
static word_t _umul1_core(const BigInt& a, const word_t b, BigInt& res) {
dword_t c = 0;
for (uint32 i = 0; i < a.size(); ++i) {
c += dword_t(a[i]) * b;
res[i] = c;
c >>= W_BITS;
}
return c;
}
static void _square(const BigInt& a, BigInt& res) {
if (a.is_zero()) {
res = BigInt();
return;
}
if (a.is_one()) {
res = BigInt(1);
return;
}
/* => square */
_umul(a, a, res);
return;
}
static void _umul(const BigInt& a, const BigInt& b, BigInt &res) {
uint32 a_bit_len = a.bit_length();
uint32 b_bit_len = b.bit_length();
if (a_bit_len < b_bit_len) {
return _mul(b, a, res);
}
if (a.is_zero() || b.is_zero()) {
res = BigInt();
return;
}
if (a.is_one()) {
res = BigInt(b);
return;
}
if (b.is_one()) {
res = BigInt(a);
return;
}
uint32 res_bit_length = a_bit_len + b_bit_len;
res.resize(1 + (res_bit_length - 1) / W_BITS);
uint32 a_size = a.size();
for (uint32 i = 0; i < b.size(); ++i) {
if (b[i] == 0) {
continue;
}
dword_t c = 0;
word_t beta = b[i];
for (uint32 j = 0; j < a.size(); ++j) {
dword_t s = dword_t(beta) * a[j] + res[i + j] + word_t(c);
res[i + j] = s;
c = s >> W_BITS;
}
if (c) {
res[i + a_size] = c;
}
}
res.normalize();
}
// [unsigned / unsigned]
static void _udivmod(const BigInt& a, const BigInt& b, BigInt& qs, BigInt& rs) {
// Modern computer arithmetic
if (a < b) {
qs = BigInt();
rs = BigInt(a);
return;
}
if (b.is_zero()) {
assert(0);
}
if (b.is_one()) {
qs = BigInt(a);
rs = BigInt();
return;
}
BigInt denom;
BigInt numer;
uint32 b_bit_len = b.bit_length();
uint32 shamt = W_BITS - b_bit_len % W_BITS;
if (shamt > 0) {
denom = b << shamt;
numer = a << shamt;
} else {
denom = b;
numer = a;
}
uint32 n_size = numer.size();
uint32 d_size = denom.size();
uint32 ofs = n_size - d_size;
if (!_shifted_ucomp(numer, ofs, denom, false)) {
qs.resize(ofs + 1);
qs[ofs] = 1;
_shifted_usub_core(numer, ofs, denom);
} else {
qs.resize(ofs);
}
word_t d = denom[d_size - 1];
FastDiv21 fd = FastDiv21(d);
BigInt tmp = BigInt(d_size + 1, 0);
for (int i = ofs - 1; i >= 0; --i) {
word_t q;
if (numer[i + d_size] >= d) {
q = ~word_t(0);
} else {
q = ((dword_t(numer[i + d_size]) << W_BITS) | numer[i + d_size - 1]) / fd;
}
if (q > 0) {
word_t c = _umul1_core(denom, q, tmp);
tmp[d_size] = c;
while (_shifted_ucomp(numer, i, tmp, false)) {
_usub_core(tmp, denom);
q -= 1;
}
_shifted_usub_core(numer, i, tmp);
}
qs[i] = q;
numer.resize(numer.size() - 1);
}
numer.normalize();
rs = BigInt(numer);
if (shamt) {
rs >>= shamt;
}
}
static void _fast_div32(
const BigInt& a21, const BigInt& a0,
const BigInt& b10, const BigInt& b1, const BigInt& b0, uint32 n,
BigInt& q, BigInt& r) {
BigInt a2 = a21 >> n;
if (a2 < b1) {
_fast_div21(a21, b1, n, q, r);
} else {
q = mask(n);
r = a21; r += b1; r -= b1 << n;
}
r <<= n; r |= a0; r -= b0 * q;
while (r < 0) {
q -= 1;
r += b10;
}
}
static void _fast_div21(const BigInt& a, const BigInt& b, uint32 n, BigInt& q, BigInt& r) {
if (a < b) {
q = BigInt();
r = BigInt(a);
return;
}
if (n <= DIVMOD_THRESHOLD) {
return _udivmod(a, b, q, r);
}
uint32 ofs = n & 1;
uint32 nh = (n + ofs) >> 1;
BigInt b10 = BigInt(b);
BigInt b1 = b >> (nh - ofs);
BigInt b0 = b.subinteger(0, nh - ofs);
BigInt a32 = a >> n;
BigInt a1 = a.subinteger(nh - ofs, n);
BigInt a0 = a.subinteger(0, nh - ofs);
BigInt q0;
if (ofs) {
b0 <<= 1;
a0 <<= 1;
b10 <<= 1;
}
_fast_div32(a32, a1, b10, b1, b0, nh, q, r);
_fast_div32(r, a0, b10, b1, b0, nh, q0, r);
q <<= nh;
q |= q0;
if (ofs) {
r >>= 1;
}
}
static void _fast_udivmod(const BigInt& a, const BigInt& b, BigInt& q, BigInt& r) {
if (a < b) {
q = BigInt();
r = BigInt(a);
return;
}
uint32 m = a.bit_length();
uint32 n = b.bit_length();
if (n <= DIVMOD_THRESHOLD) {
return _udivmod(a, b, q, r);
}
uint32 q_bit_len = m - n + 1;
uint32 nblock = 1 + m / n;
q.resize(1 + (q_bit_len - 1) / W_BITS);
BigInt tmp_q;
r = a.subinteger((nblock - 1) * n, nblock * n);
for (int i = nblock - 2; i >= 0; --i) {
r <<= n;
r |= a.subinteger(i * n, (i + 1) * n);
_fast_div21(r, b, n, tmp_q, r);
tmp_q <<= (i * n);
q |= tmp_q;
}
}
static void _land(BigInt& res, const BigInt& b) {
// assert(res.size() <= b.size());
for (uint32 i = 0; i < res.size(); ++i) {
res[i] &= b[i];
}
res.normalize();
}
static void _lxor(BigInt& res, const BigInt& b) {
// assert(res.size() >= b.size());
for (uint32 i = 0; i < b.size(); ++i) {
res[i] ^= b[i];
}
res.normalize();
}
static void _lor(BigInt& res, const BigInt& b) {
// assert(res.size() >= b.size());
for (uint32 i = 0; i < b.size(); ++i) {
res[i] |= b[i];
}
}
static void _lshift(const BigInt& n, const uint32 size,
uint32 shamt, BigInt& res, const uint32 res_size) {
uint32 q = shamt / W_BITS;
uint32 r = shamt % W_BITS;
if (r) {
word_t c = n[size - 1];
if (res_size > size + q) {
res[res_size - 1] = c >> (W_BITS - r);
}
c <<= r;
for (int i = size - 1; i >= 1; --i) {
word_t t = n[i - 1];
res[i + q] = c | (t >> (W_BITS - r));
c = t << r;
}
res[q] = c;
} else {
for (int i = size - 1; i >= 0; --i) {
res[i + q] = n[i];
}
}
for (uint32 i = 0; i < q; ++i) {
res[i] = 0;
}
}
static void _rshift(const BigInt& n, const uint32 size,
uint32 shamt, BigInt& res, const uint32 res_size) {
uint32 q = shamt / W_BITS;
uint32 r = shamt % W_BITS;
if (r) {
word_t c = n[q] >> r;
for (uint32 i = 0; i < res_size - 1; ++i) {
word_t t = n[i + q + 1];
res[i] = c | (t << (W_BITS - r));
c = t >> r;
}
if (res_size + q < size) {
c |= n[size - 1] << (W_BITS - r);
}
res[res_size - 1] = c;
} else {
for (uint32 i = 0; i < size - q; ++i) {
res[i] = n[i + q];
}
}
}
static void _fib(uint32 n, BigInt& a, BigInt& b) {
if (n <= 2) {
a = BigInt((n + 1) >> 1);
b = BigInt((n + 2) >> 1);
return;
}
BigInt a_, b_;
_fib((n >> 1) - 1, a_, b_);
a_ *= a_;
b_ *= b_;
int e = ((n >> 1) & 1 ? -2 : 2);
BigInt c = b_ + a_;
BigInt d = (b_ << 2) - a_ + e;
if (n & 1) {
a = d;
b = (d << 1) - c;
} else {
a = d - c;
b = d;
}
}
void _isqrt(BigInt& a, BigInt& s, BigInt& r) {
if (a < (word_t(1) << 52)) {
s = BigInt(word_t(std::sqrt(uint64(a))));
r = a - s * s;
return;
}
uint32 n = a.bit_length();
bool adjusted = ((n - 1) & 2) == 0;
if (adjusted) {
a <<= 2;
n += 2;
}
uint32 nq = (n + 1) >> 2;
uint32 nh = nq << 1;
BigInt ah = a >> nh;
BigInt al = a.subinteger(0, nh);
BigInt a1 = al >> nq;
BigInt a0 = al.subinteger(0, nq);
BigInt s1, r1;
_isqrt(ah, s1, r1);
BigInt q, u;
divmod((r1 << nq) + a1, s1 << 1, q, u);
s = (s1 << nq) + q;
r = (u << nq) + a0 - q * q;
if (r < 0) {
r += (s << 1);
r -= 1;
s -= 1;
}
if (adjusted) {
a >>= 2;
r >>= 2;
if (s & 1) {
s >>= 1;
r += s;
r += 1;
} else {
s >>= 1;
}
}
}
int sign_;
container_t n_;
};
int main() {
using namespace std;
uint32 n;
while (~scanf("%u", &n)) {
if (n == 2) {
cout << "3\nINF" << endl;
} else {
BigInt ans;
if (n & 1) {
ans = BigInt::fib(n);
} else {
BigInt a, b;
BigInt::fib(n / 2 - 1, a, b);
ans = a * b;
ans <<= 1;
}
cout << n << endl;
cout << ans << endl;
}
}
return 0;
}
Min_25