結果
| 問題 |
No.1324 Approximate the Matrix
|
| コンテスト | |
| ユーザー |
mtsd
|
| 提出日時 | 2020-12-21 23:45:20 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,399 bytes |
| コンパイル時間 | 1,753 ms |
| コンパイル使用メモリ | 139,600 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-21 13:23:00 |
| 合計ジャッジ時間 | 3,331 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 9 WA * 33 |
ソースコード
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <climits>
#include <cmath>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iostream>
#include <iomanip>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <cstdint>
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef pair<int,int> pii;
#define MP make_pair
#define PB push_back
#define inf 1000000007
#define rep(i,n) for(int i = 0; i < (int)(n); ++i)
#define all(x) (x).begin(),(x).end()
template<typename A, size_t N, typename T>
void Fill(A (&array)[N], const T &val){
std::fill( (T*)array, (T*)(array+N), val );
}
template<class T> inline bool chmax(T &a, T b){
if(a<b){
a = b;
return true;
}
return false;
}
template<class T> inline bool chmin(T &a, T b){
if(a>b){
a = b;
return true;
}
return false;
}
template<typename T> class Dinic {
private:
int V;
vector<int> level,iter;
void bfs(int s) {
fill(level.begin(),level.end(),-1);
queue<int> que;
level[s] = 0;
que.push(s);
while(!que.empty()){
int v = que.front();
que.pop();
for(auto& e : G[v]){
if(e.cap > 0 && level[e.to] < 0){
level[e.to] = level[v] + 1;
que.push(e.to);
}
}
}
}
T dfs(int v,int t,T f) {
if(v==t){
return f;
}
for(int& i = iter[v]; i < (int)G[v].size(); i++){
edge& e = G[v][i];
if(e.cap > 0 && level[v] < level[e.to]){
T d = dfs(e.to,t,min(f,e.cap));
if(d > 0){
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
public:
struct edge{
int to;
T cap;
int rev;
};
vector<vector<edge> > G;
Dinic(int node_size) : V(node_size), level(V), iter(V), G(V){}
//辺を張る
void add_edge(int from,int to,T cap) {
G[from].push_back((edge){to,cap,(int)G[to].size()});
G[to].push_back((edge){from,(T)0,(int)G[from].size()-1});
}
//最大流を計算
T solve(int s,int t) {
T flow = 0;
for(;;){
bfs(s);
if(level[t] < 0) return flow;
fill(iter.begin(),iter.end(),0);
T f;
while((f=dfs(s,t,numeric_limits<T>::max())) > 0){
flow += f;
}
}
}
};
int main(){
int n,k;
cin >> n >> k;
vector<int> a(n);
rep(i,n) cin >> a[i];
vector<int> b(n);
rep(i,n) cin >> b[i];
vector<vector<int> > p(n,vector<int>(n));
priority_queue<pair<int,pair<int,int> > > pq;
rep(i,n){
rep(j,n){
cin >> p[i][j];
pq.push(MP(p[i][j],MP(i,j)));
}
}
vector<vector<int> > res(n,vector<int>(n));
while(!pq.empty()){
auto x = pq.top();
pq.pop();
vector<pair<int,int> > zz;
int iii = x.second.first;
int jjj = x.second.second;
if(a[iii]>0&&b[jjj]>0){
zz.push_back(MP(iii,jjj));
while(!pq.empty()){
auto xx = pq.top();
int ii = xx.second.first;
int jj = xx.second.second;
if(xx.first == x.first){
pq.pop();
if(a[ii]>0&&b[jj]>0){
zz.push_back(MP(ii,jj));
}
}else{
break;
}
}
Dinic<int> dc(2*n+2);
int S = 2*n;
int T = 2*n+1;
rep(i,n){
if(a[i]!=0){
dc.add_edge(S,i,a[i]);
}
if(b[i]!=0){
dc.add_edge(i+n,T,b[i]);
}
}
// cerr << "test" << endl;
for(auto xx:zz){
// cerr << xx.first << " " << xx.second << endl;
dc.add_edge(xx.first,xx.second + n,1);
}
dc.solve(S,T);
auto &g = dc.G;
rep(i,n){
for(auto xx:g[i]){
// cerr << i << " " <<xx.to << " " << xx.cap << endl;
if(xx.cap==0&&xx.to < 2*n){
int ii = i;
int jj = xx.to-n;
// cerr << "ok:" << ii << " " << jj << endl;
res[ii][jj]++;
a[ii]--;
b[jj]--;
pq.push(MP(x.first-1,MP(ii,jj)));
}
}
}
}
// cerr << "Test" << endl;
// rep(i,n)cerr << a[i] << " ";
// cerr << endl;
// rep(i,n)cerr << b[i] << " ";
// cerr << endl;
}
ll ans =0;
// rep(i,n){
// rep(j,n){
// cerr << res[i][j] << " ";
// }
// cerr << endl;
// }
rep(i,n){
rep(j,n){
ans += (res[i][j]-p[i][j])*(res[i][j]-p[i][j]);
}
}
cout << ans << endl;
return 0;
}
mtsd