結果

問題 No.1145 Sums of Powers
ユーザー Eki1009Eki1009
提出日時 2020-12-23 02:24:27
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 14,851 bytes
コンパイル時間 621 ms
コンパイル使用メモリ 82,788 KB
実行使用メモリ 256,420 KB
最終ジャッジ日時 2024-09-21 15:17:22
合計ジャッジ時間 5,345 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 49 ms
64,000 KB
testcase_01 AC 49 ms
58,848 KB
testcase_02 AC 1,012 ms
82,484 KB
testcase_03 TLE -
testcase_04 -- -
testcase_05 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

mod = 998244353
sum_e = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497)
sum_ie = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951)

import random

def cipolla(a, p):
    a %= p
    if p == 2:
        return a
    if a == 0:
        return 0
    k = (p - 1) // 2
    if pow(a, k, p) != 1:
        return -1
    while True:
        c = random.randint(2, p - 1)
        theta = (c * c - a) % p
        if theta == 0:
            return c
        if pow(theta, k, p) == p - 1:
            break
    k += 1
    f0, f1 = c, 1
    g0, g1 = 1, 0
    while k:
        if k & 1:
            g0, g1 = f0 * g0 + theta * f1 * g1, f1 * g0 + f0 * g1
        f0, f1 = f0 * f0 + theta * f1 * f1, 2 * f0 * f1
        f0 %= p
        f1 %= p
        g0 %= p
        g1 %= p
        k >>= 1
    return g0

def inv_gcd(a, b):
    a %= b
    if a == 0:
        return b, 0
    s, t = b, a
    m0, m1 = 0, 1
    while t:
        u = s // t
        s -= t * u
        m0 -= m1 * u
        s, t = t, s
        m0, m1 = m1, m0
    if m0 < 0:
        m0 += b // s
    return s, m0
 
def inv_mod(x):
    return inv_gcd(x, mod)[1]

class Binomial:
    def __init__(self):
        self.fac_ = [1, 1]
        self.finv_ = [1, 1]
        self.inv_ = [1, 1]
    
    def extend(self):
        n = len(self.fac_)
        a = self.fac_[-1] * n % mod
        b = (-self.inv_[mod % n]) * (mod // n) % mod
        c = self.finv_[-1] * b % mod
        self.fac_.append(a)
        self.inv_.append(b)
        self.finv_.append(c)
    
    def fac(self, i):
        while i >= len(self.fac_):
            self.extend()
        return self.fac_[i]
    
    def finv(self, i):
        while i >= len(self.finv_):
            self.extend()
        return self.finv_[i]
    
    def inv(self, i):
        while i >= len(self.inv_):
            self.extend()
        return self.inv_[i]
    
    def comb(self, n, k):
        if n < k or k < 0:
            return 0
        return self.fac(n) * self.finv(n - r) * self.finv(r) % mod
    
    def perm(self, n, k):
        if n < k or r < 0:
            return 0
        return self.fac(n) * self.finv(n - k) % mod

bi = Binomial()

def butterfly(A):
    n = len(A)
    h = (n - 1).bit_length()
    for ph in range(1, h + 1):
        w = 1 << (ph - 1)
        p = 1 << (h - ph)
        now = 1
        for s in range(w):
            offset = s << (h - ph + 1)
            for i in range(p):
                l = A[i + offset]
                r = A[i + offset + p] * now
                A[i + offset] = (l + r) % mod
                A[i + offset + p] = (l - r) % mod
            now *= sum_e[(~s & -~s).bit_length() - 1]
            now %= mod
    
def butterfly_inv(A):
    n = len(A)
    h = (n - 1).bit_length()
    for ph in range(h, 0, -1):
        w = 1 << (ph - 1)
        p = 1 << (h - ph)
        inow = 1
        for s in range(w):
            offset = s << (h - ph + 1)
            for i in range(p):
                l = A[i + offset]
                r = A[i + offset + p]
                A[i + offset] = (l + r) % mod
                A[i + offset + p] = (mod + l - r) * inow % mod
            inow *= sum_ie[(~s & -~s).bit_length() - 1]
            inow %= mod
    
def convolution(_A, _B):
    A = _A.copy()
    B = _B.copy()
    n = len(A)
    m = len(B)
    if not n or not m:
        return []
    if min(n, m) <= 60:
        if n < m:
            n, m = m, n
            A, B = B, A
        res = [0] * (n + m - 1)
        for i in range(n):
            for j in range(m):
                res[i + j] += A[i] * B[j]
                res[i + j] %= mod
        return res
    z = 1 << (n + m - 2).bit_length()
    A += [0] * (z - n)
    B += [0] * (z - m)
    butterfly(A)
    butterfly(B)
    for i in range(z):
        A[i] *= B[i]
        A[i] %= mod
    butterfly_inv(A)
    A = A[:n + m - 1]
    iz = inv_mod(z)
    for i in range(n + m - 1):
        A[i] *= iz
        A[i] %= mod
    return A

def autocorrelation(_A):
    A = _A.copy()
    n = len(A)
    if not n:
        return []
    if n <= 60:
        res = [0] * (n + n - 1)
        for i in range(n):
            for j in range(n):
                res[i + j] += A[i] * A[j]
                res[i + j] %= mod
        return res
    z = 1 << (n + n - 2).bit_length()
    A += [0] * (z - n)
    butterfly(A)
    for i in range(z):
        A[i] *= A[i]
        A[i] %= mod
    butterfly_inv(A)
    A = A[:n + n - 1]
    iz = inv_mod(z)
    for i in range(n + n - 1):
        A[i] *= iz
        A[i] %= mod
    return A




class formal_power_series:
    def __init__(self, poly=[]):
        self.poly = [p % mod for p in poly]
    
    def __getitem__(self, key):
        if isinstance(key, slice):
            res = self.poly[key]
            return formal_power_series(res)
        else:
            if key < 0:
                raise IndexError("list index out of range")
            if key >= len(self.poly):
                return 0
            else:
                return self.poly[key]
    
    def __setitem__(self, key, value):
        if key < 0:
            raise IndexError("list index out of range")
        if key >= len(self.poly):
            self.poly += [0] * (key - len(self.poly) + 1)
        self.poly[key] = value % mod
    
    def __len__(self):
        return len(self.poly)
    
    def times(self, n):
        n %= mod
        res = [p * n for p in self.poly]
        return formal_power_series(res)
        
    def __pos__(self):
        return self
    
    def __neg__(self):
        return self.times(-1)
    
    def __add__(self, other):
        if other.__class__ == formal_power_series:
            s = len(self)
            t = len(other)
            n = min(s, t)
            res = [self.poly[i] + other.poly[i] for i in range(n)]
            if s >= t:
                res += self.poly[t:]
            else:
                res += other.poly[s:]
            return formal_power_series(res)
        else:
            self.poly[0] += other
            self.poly[0] %= mod
            return self
            
    def __radd__(self, other):
        return self + other
    
    def __sub__(self, other):
        return self + (-other)
    
    def __rsub__(self, other):
        return (-self) + other
    
    def __mul__(self, other):
        if other.__class__ == formal_power_series:
            res = convolution(self.poly, other.poly)
            return formal_power_series(res)
        else:
            return self.times(other)
    
    def __rmul__(self, other):
        return self.times(other)
    
    def __lshift__(self, other):
        return formal_power_series(([0] * other) + self.poly)
    
    def __rshift__(self, other):
        return self[other:]
    
    def square(self):
        res = autocorrelation(self.poly)
        return formal_power_series(res)

    def inv(self, deg=-1):
        assert self.poly[0]
        if deg == -1:
            deg = len(self) - 1
        r = inv_mod(self.poly[0])
        m = 1
        T = [0] * (deg + 1)
        T[0] = r
        res = formal_power_series(T)
        t = 748683265
        iz = 1
        while m <= deg:
            F = [0] * (2 * m)
            G = [0] * (2 * m)
            for j in range(min(len(self), 2 * m)):
                F[j] = self.poly[j]
            for j in range(m):
                G[j] = res[j]
            butterfly(F)
            butterfly(G)
            for j in range(2 * m):
                F[j] *= G[j]
                F[j] %= mod
            butterfly_inv(F)
            for j in range(m):
                F[j] = 0
            butterfly(F)
            for j in range(2 * m):
                F[j] *= G[j]
                F[j] %= mod
            butterfly_inv(F)
            iz *= t
            iz %= mod
            for j in range(m, min(2 * m, deg + 1)):
                res[j] = -F[j]*iz
            m <<= 1
        return res
    
    #P/Q
    def __truediv__(self, other):
        if other.__class__ == formal_power_series:
            return (self * other.inv())
        else:
            return self * inv_mod(other)
    
    def __rtruediv__(self, other):
        return other * self.inv()
        
    #P,Qを多項式として見たときのPをQで割った商を求める
    def __floordiv__(self, other):
        if other.__class__ == formal_power_series:
            if len(self) < len(other):
                return formal_power_series()
            else:
                m = len(self) - len(other) + 1
                res = (self[-1:-m-1:-1] * other[::-1].inv(m))[m-1::-1]
                return res
        else:
            return self * inv_mod(other)

    def __rfloordiv__(self, other):
        return other * self.inv()

    def __mod__(self, other):
        if len(self) < len(other):
            return self[:]
        else:
            res = self[:len(other) - 1] - ((self // other) * other)[:len(other) - 1]
            return res
    
    def differentiate(self):
        res = [k * p for k, p in enumerate(self.poly[1:], 1)]
        return formal_power_series(res)
    
    def integrate(self):
        res = [0] + [bi.inv(k) * p for k, p in enumerate(self.poly, 1)]
        return formal_power_series(res)
    
    def log(self, deg=-1):
        if deg == -1:
            deg = len(self) - 1
        return (self.differentiate() * self.inv(deg))[:deg].integrate()
    
    def exp(self, deg=-1):
        if deg == -1:
            deg = len(self) - 1
        res = formal_power_series([1])
        G = formal_power_series([1])
        df = self.differentiate()
        m = 1
        while m <= deg:
            G = G * 2 - (res * G.square())[:m]
            m <<= 1
            dft = df[:m]
            W = dft + (G * (res.differentiate() - (res * dft)[:m]))[:m]
            res += (res * (self[:m] - W.integrate()[:m]))[:m]
        return res[:deg + 1]
    
    def __pow__(self, n, deg=-1):
        if deg == -1:
            deg = len(self) - 1
        m = abs(n)
        for d, p in enumerate(self.poly):
            if p:
                break
        else:
            return formal_power_series()
        if d * m >= len(self):
            return formal_power_series()
        G = self[d:]
        G = ((G * inv_mod(p)).log() * m).exp() * pow(p, m, mod)
        res = formal_power_series([0] * (d * m) + G.poly)
        if n >= 0:
            return res[:deg + 1]
        else:
            return res.inv()[:deg + 1]
    
    def sqrt(self, deg=-1):
        if deg == -1:
            deg = len(self) - 1
        if len(self) == 0:
            return formal_power_series()
        if self.poly[0] == 0:
            for d in range(1, len(self)):
                if self.poly[d]:
                    if d & 1:
                        return -1
                    if deg < d // 2:
                        break
                    res = self[d:].sqrt(deg - d // 2)
                    if res == -1:
                        return -1
                    res = res << (d // 2)
                    return res
            return formal_power_series()
        
        sqr = cipolla(self.poly[0], mod)
        if sqr == -1:
            return -1
        T = [0] * (deg + 1)
        T[0] = sqr
        res = formal_power_series(T)
        two_inv = (mod + 1) // 2
        m = 1
        while m <= deg:
            m <<= 1
            k = min(m, deg + 1)
            res = res + (self[:k] * res.inv(k -1))[:k]
            res = res * two_inv
        return res
    
    
    #各p_i(0<=i<m)についてf(p_i)を求める
    def multipoint_evaluation(self, P):
        m = len(P)
        size = 1 << (m - 1).bit_length()
        G = [formal_power_series([1]) for _ in range(2 * size)]
        for i in range(m):
            G[size + i] = formal_power_series([-P[i], 1])
        for i in range(size - 1, 0, -1):
            G[i] = G[2 * i] * G[2 * i + 1]
        G[1] = self % G[1]
        for i in range(2, size + m):
            G[i] = G[i >> 1] % G[i]
        res = [G[i][0] for i in range(size, size + m)]
        return res
    
    def taylor_shift(self, a):
        n = len(self)
        res = self[:]
        for i in range(n):
            res[i] *= bi.fac(i)
        res = res[::-1]
        G = formal_power_series([0] * n)
        G[0] = 1
        for i in range(1, n):
            G[i] = G[i - 1] * a * bi.inv(i)
        res = (res * G)[:n]
        res = res[::-1]
        for i in range(n):
            res[i] *= bi.finv(i)
        return res

    
    
#[x^n]P/Qを求める
def poly_coef(Q, P, n):
    while n:
        R = [0] * len(Q.poly)
        for i, q in enumerate(Q.poly):
            if i & 1:
                R[i] = -q
            else:
                R[i] = q
        R = formal_power_series(R)
        P = P * R
        Q = Q * R
        if n & 1:
            P = P[1::2]
        else:
            P = P[::2]
        Q = Q[::2]
        n >>= 1
    return P[0]


def subset_sum(A, limit):
    C = [0] * (limit + 1)
    for a in A:
        C[a] += 1
    res = formal_power_series([0] * (limit + 1))
    for i in range(1, limit + 1):
        for k in range(1, limit // i + 1):
            j = i * k
            res[j] += ((k & 1) * 2 - 1) * C[i] * bi.inv(k)
    return res.exp(limit).poly

def partition_function(n):
    res = formal_power_series([0] * (n + 1))
    res[0] = 1
    for k in range(1, n+1):
        k1 = k * (3 * k + 1 )// 2
        k2 = k * (3 * k - 1) // 2
        if k2 > n:
            break
        if k1 <= n:
            res[k1] += 1 - (k & 1) * 2
        if k2 <= n:
            res[k2] += 1 - (k & 1) * 2
    return res.inv().poly

def bernoulli_number(n):
    n += 1
    Q = formal_power_series([bi.finv(i + 1) for i in range(n)]).inv(n - 1)
    res = [v * bi.fac(i) % mod for i, v in enumerate(Q.poly)]
    return res

def stirling_first(n):
    if n <= 0:
        return formal_power_series([1])
    lg = (n - 1).bit_length()
    res = formal_power_series([0, 1])
    for i in range(lg - 1, -1, -1):
        k = n >> i
        F *= F.taylor_shift(k >> 1)
        

def stirling_second(n):
    F = formal_power_series([0] * (n + 1))
    G = formal_power_series([0] * (n + 1))
    for i in range(n + 1):
        F[i] = pow(i, n, mod) * bi.finv(i)
        G[i] = (1 - (i & 1) * 2) * bi.finv(i)
    return (F * G)[:n + 1].poly


import sys
input = sys.stdin.readline

n, m = map(int, input().split())
A = tuple(map(int, input().split()))
F = formal_power_series([0]*(m+1))
for a in A:
    T = formal_power_series([1, -a]).log(m)
    F += T
L = []
for k in range(1, m+1):
    L.append(-F[k] * k % mod)
print(*L)
0