結果
問題 | No.235 めぐるはめぐる (5) |
ユーザー | yuruhiya |
提出日時 | 2020-12-23 13:26:21 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,593 ms / 10,000 ms |
コード長 | 35,218 bytes |
コンパイル時間 | 2,818 ms |
コンパイル使用メモリ | 230,416 KB |
実行使用メモリ | 36,224 KB |
最終ジャッジ日時 | 2024-09-21 16:23:01 |
合計ジャッジ時間 | 9,374 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,593 ms
35,452 KB |
testcase_01 | AC | 1,046 ms
36,224 KB |
testcase_02 | AC | 1,492 ms
35,664 KB |
ソースコード
#line 2 "/home/yuruhiya/programming/library/template/template.cpp" #include <bits/stdc++.h> #line 6 "/home/yuruhiya/programming/library/template/constants.cpp" #define rep(i, n) for (int i = 0; i < (n); ++i) #define FOR(i, m, n) for (int i = (m); i < (n); ++i) #define rrep(i, n) for (int i = (n)-1; i >= 0; --i) #define rfor(i, m, n) for (int i = (m); i >= (n); --i) #define unless(c) if (!(c)) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r) using namespace std; using ll = long long; using LD = long double; using VB = vector<bool>; using VVB = vector<VB>; using VI = vector<int>; using VVI = vector<VI>; using VL = vector<ll>; using VVL = vector<VL>; using VS = vector<string>; using VD = vector<LD>; using PII = pair<int, int>; using VP = vector<PII>; using PLL = pair<ll, ll>; using VPL = vector<PLL>; template <class T> using PQ = priority_queue<T>; template <class T> using PQS = priority_queue<T, vector<T>, greater<T>>; constexpr int inf = 1000000000; constexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007; constexpr long double PI = 3.14159265358979323846, EPS = 1e-12; #line 7 "/home/yuruhiya/programming/library/template/Input.cpp" using namespace std; #ifdef _WIN32 #define getchar_unlocked _getchar_nolock #define putchar_unlocked _putchar_nolock #define fwrite_unlocked fwrite #define fflush_unlocked fflush #endif class Scanner { static int gc() { return getchar_unlocked(); } static char next_char() { char c; read(c); return c; } template <class T> static void read(T& v) { cin >> v; } static void read(char& v) { while (isspace(v = gc())) ; } static void read(bool& v) { v = next_char() != '0'; } static void read(string& v) { v.clear(); for (char c = next_char(); !isspace(c); c = gc()) v += c; } static void read(int& v) { v = 0; bool neg = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c); c = gc()) v = v * 10 + (c - '0'); if (neg) v = -v; } static void read(long long& v) { v = 0; bool neg = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c); c = gc()) v = v * 10 + (c - '0'); if (neg) v = -v; } static void read(double& v) { v = 0; double dp = 1; bool neg = false, after_dp = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c) || c == '.'; c = gc()) { if (c == '.') { after_dp = true; } else if (after_dp) { v += (c - '0') * (dp *= 0.1); } else { v = v * 10 + (c - '0'); } } if (neg) v = -v; } static void read(long double& v) { v = 0; long double dp = 1; bool neg = false, after_dp = false; char c = next_char(); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c) || c == '.'; c = gc()) { if (c == '.') { after_dp = true; } else if (after_dp) { v += (c - '0') * (dp *= 0.1); } else { v = v * 10 + (c - '0'); } } if (neg) v = -v; } template <class T, class U> static void read(pair<T, U>& v) { read(v.first); read(v.second); } template <class T> static void read(vector<T>& v) { for (auto& e : v) read(e); } template <size_t N = 0, class T> static void read_tuple_impl(T& v) { if constexpr (N < tuple_size_v<T>) { read(get<N>(v)); read_tuple_impl<N + 1>(v); } } template <class... T> static void read(tuple<T...>& v) { read_tuple_impl(v); } struct ReadVectorHelper { size_t n; ReadVectorHelper(size_t _n) : n(_n) {} template <class T> operator vector<T>() { vector<T> v(n); read(v); return v; } }; struct Read2DVectorHelper { size_t n, m; Read2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {} template <class T> operator vector<vector<T>>() { vector<vector<T>> v(n, vector<T>(m)); read(v); return v; } }; public: string read_line() const { string v; for (char c = gc(); c != '\n' && c != '\0'; c = gc()) v += c; return v; } template <class T> T read() const { T v; read(v); return v; } template <class T> vector<T> read_vector(size_t n) const { vector<T> a(n); read(a); return a; } template <class T> operator T() const { return read<T>(); } int operator--(int) const { return read<int>() - 1; } ReadVectorHelper operator[](size_t n) const { return ReadVectorHelper(n); } Read2DVectorHelper operator[](const pair<size_t, size_t>& nm) const { return Read2DVectorHelper(nm); } void operator()() const {} template <class H, class... T> void operator()(H&& h, T&&... t) const { read(h); operator()(forward<T>(t)...); } private: template <template <class...> class, class...> struct Multiple; template <template <class...> class V, class Head, class... Tail> struct Multiple<V, Head, Tail...> { template <class... Args> using vec = V<vector<Head>, Args...>; using type = typename Multiple<vec, Tail...>::type; }; template <template <class...> class V> struct Multiple<V> { using type = V<>; }; template <class... T> using multiple_t = typename Multiple<tuple, T...>::type; template <size_t N = 0, class T> void multiple_impl(T& t) const { if constexpr (N < tuple_size_v<T>) { auto& vec = get<N>(t); using V = typename remove_reference_t<decltype(vec)>::value_type; vec.push_back(read<V>()); multiple_impl<N + 1>(t); } } public: template <class... T> auto multiple(size_t h) const { multiple_t<T...> result; while (h--) multiple_impl(result); return result; } } in; #define inputs(T, ...) \ T __VA_ARGS__; \ in(__VA_ARGS__) #define ini(...) inputs(int, __VA_ARGS__) #define inl(...) inputs(long long, __VA_ARGS__) #define ins(...) inputs(string, __VA_ARGS__) #line 7 "/home/yuruhiya/programming/library/template/Output.cpp" #include <charconv> #line 10 "/home/yuruhiya/programming/library/template/Output.cpp" using namespace std; struct BoolStr { const char *t, *f; BoolStr(const char* _t, const char* _f) : t(_t), f(_f) {} } Yes("Yes", "No"), yes("yes", "no"), YES("YES", "NO"), Int("1", "0"); struct DivStr { const char *d, *l; DivStr(const char* _d, const char* _l) : d(_d), l(_l) {} } spc(" ", "\n"), no_spc("", "\n"), end_line("\n", "\n"), comma(",", "\n"), no_endl(" ", ""); class Printer { BoolStr B{Yes}; DivStr D{spc}; public: void print(int v) const { char buf[12]{}; if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) { fwrite(buf, sizeof(char), ptr - buf, stdout); } else { assert(false); } } void print(long long v) const { char buf[21]{}; if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) { fwrite(buf, sizeof(char), ptr - buf, stdout); } else { assert(false); } } void print(bool v) const { print(v ? B.t : B.f); } void print(vector<bool>::reference v) const { print(v ? B.t : B.f); } void print(char v) const { putchar_unlocked(v); } void print(const char* v) const { fwrite_unlocked(v, 1, strlen(v), stdout); } void print(double v) const { printf("%.20f", v); } void print(long double v) const { printf("%.20Lf", v); } template <class T> void print(const T& v) const { cout << v; } template <class T, class U> void print(const pair<T, U>& v) const { print(v.first); print(D.d); print(v.second); } template <class InputIterater> void print_range(const InputIterater& begin, const InputIterater& end) const { for (InputIterater i = begin; i != end; ++i) { if (i != begin) print(D.d); print(*i); } } template <class T> void print(const vector<T>& v) const { print_range(v.begin(), v.end()); } template <class T, size_t N> void print(const array<T, N>& v) const { print_range(v.begin(), v.end()); } template <class T> void print(const vector<vector<T>>& v) const { for (size_t i = 0; i < v.size(); ++i) { if (i) print(D.l); print(v[i]); } } Printer() = default; Printer(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {} Printer& operator()() { print(D.l); return *this; } template <class H> Printer& operator()(H&& h) { print(h); print(D.l); return *this; } template <class H, class... T> Printer& operator()(H&& h, T&&... t) { print(h); print(D.d); return operator()(forward<T>(t)...); } template <class InputIterator> Printer& range(const InputIterator& begin, const InputIterator& end) { print_range(begin, end); print(D.l); return *this; } template <class T> Printer& range(const T& a) { range(a.begin(), a.end()); return *this; } template <class... T> void exit(T&&... t) { operator()(forward<T>(t)...); std::exit(EXIT_SUCCESS); } Printer& flush() { fflush_unlocked(stdout); return *this; } Printer& set(const BoolStr& b) { B = b; return *this; } Printer& set(const DivStr& d) { D = d; return *this; } Printer& set(const char* t, const char* f) { B = BoolStr(t, f); return *this; } } out; #line 3 "/home/yuruhiya/programming/library/template/Step.cpp" using namespace std; template <class T> struct Step { using value_type = T; class iterator { value_type a, b, c; public: constexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {} constexpr iterator(value_type _b, value_type _c, value_type _s) : a(_b), b(_c), c(_s) {} constexpr iterator& operator++() { --b; a += c; return *this; } constexpr iterator operator++(int) { iterator tmp = *this; --b; a += c; return tmp; } constexpr const value_type& operator*() const { return a; } constexpr const value_type* operator->() const { return &a; } constexpr bool operator==(const iterator& i) const { return b == i.b; } constexpr bool operator!=(const iterator& i) const { return !(b == i.b); } constexpr value_type start() const { return a; } constexpr value_type size() const { return b; } constexpr value_type step() const { return c; } }; constexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {} constexpr iterator begin() const { return be; } constexpr iterator end() const { return en; } constexpr value_type start() const { return be.start(); } constexpr value_type size() const { return be.size(); } constexpr value_type step() const { return be.step(); } constexpr value_type sum() const { return start() * size() + step() * (size() * (size() - 1) / 2); } operator vector<value_type>() const { return to_a(); } auto to_a() const { vector<value_type> result; result.reserve(size()); for (auto i : *this) { result.push_back(i); } return result; } private: iterator be, en; }; template <class T> constexpr auto step(T a) { return Step<T>(0, a, 1); } template <class T> constexpr auto step(T a, T b) { return Step<T>(a, b - a, 1); } template <class T> constexpr auto step(T a, T b, T c) { return Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c); } #line 8 "/home/yuruhiya/programming/library/template/Ruby.cpp" using namespace std; template <class F> struct Callable { F func; Callable(const F& f) : func(f) {} }; template <class T, class F> auto operator|(const T& v, const Callable<F>& c) { return c.func(v); } struct Sort_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(begin(v), end(v), f); return v; }); } template <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) { sort(begin(v), end(v)); return v; } } Sort; struct SortBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(begin(v), end(v), [&](const auto& i, const auto& j) { return f(i) < f(j); }); return v; }); } } SortBy; struct RSort_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(rbegin(v), rend(v), f); return v; }); } template <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) { sort(rbegin(v), rend(v)); return v; } } RSort; struct RSortBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(begin(v), end(v), [&](const auto& i, const auto& j) { return f(i) > f(j); }); return v; }); } } RSortBy; struct Reverse_impl { template <class T> friend auto operator|(T v, const Reverse_impl& c) { reverse(begin(v), end(v)); return v; } } Reverse; struct Unique_impl { template <class T> friend auto operator|(T v, const Unique_impl& c) { v.erase(unique(begin(v), end(v), end(v))); return v; } } Unique; struct Uniq_impl { template <class T> friend auto operator|(T v, const Uniq_impl& c) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); return v; } } Uniq; struct Rotate_impl { auto operator()(int&& left) { return Callable([&](auto v) { int s = static_cast<int>(size(v)); assert(-s <= left && left <= s); if (0 <= left) { rotate(begin(v), begin(v) + left, end(v)); } else { rotate(begin(v), end(v) + left, end(v)); } return v; }); } } Rotate; struct Max_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { return *max_element(begin(v), end(v), f); }); } template <class T> friend auto operator|(T v, const Max_impl& c) { return *max_element(begin(v), end(v)); } } Max; struct Min_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { return *min_element(begin(v), end(v), f); }); } template <class T> friend auto operator|(T v, const Min_impl& c) { return *min_element(begin(v), end(v)); } } Min; struct MaxPos_impl { template <class T> friend auto operator|(T v, const MaxPos_impl& c) { return max_element(begin(v), end(v)) - begin(v); } } MaxPos; struct MinPos_impl { template <class T> friend auto operator|(T v, const MinPos_impl& c) { return min_element(begin(v), end(v)) - begin(v); } } MinPos; struct MaxBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto max_it = begin(v); auto max_val = f(*max_it); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); max_val < val) { max_it = it; max_val = val; } } return *max_it; }); } } MaxBy; struct MinBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto min_it = begin(v); auto min_val = f(*min_it); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); min_val > val) { min_it = it; min_val = val; } } return *min_it; }); } } MinBy; struct MaxOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto max_val = f(*begin(v)); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); max_val < val) { max_val = val; } } return max_val; }); } } MaxOf; struct MinOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto min_val = f(*begin(v)); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); min_val > val) { min_val = val; } } return min_val; }); } } MinOf; struct Count_impl { template <class V> auto operator()(const V& val) { return Callable([&](auto v) { return count(begin(v), end(v), val); }); } } Count; struct CountIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { return count_if(begin(v), end(v), f); }); } } CountIf; struct Index_impl { template <class V> auto operator()(const V& val) { return Callable([&](auto v) -> optional<int> { auto result = find(begin(v), end(v), val); return result != end(v) ? optional(result - begin(v)) : nullopt; }); } template <class V> auto operator()(const V& val, size_t i) { return Callable([&](auto v) -> optional<int> { auto result = find(next(begin(v), i), end(v), val); return result != end(v) ? optional(result - begin(v)) : nullopt; }); } } Index; struct IndexIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) -> optional<int> { auto result = find_if(begin(v), end(v), f); return result != end(v) ? optional(result - begin(v)) : nullopt; }); } } IndexIf; struct FindIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) -> optional<typename decltype(v)::value_type> { auto result = find_if(begin(v), end(v), f); return result != end(v) ? optional(*result) : nullopt; }); } } FindIf; struct Sum_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { return accumulate(next(begin(v)), end(v), f(*begin(v)), [&](const auto& a, const auto& b) { return a + f(b); }); }); } template <class T> friend auto operator|(T v, const Sum_impl& c) { return accumulate(begin(v), end(v), typename T::value_type{}); } } Sum; struct Includes { template <class V> auto operator()(const V& val) { return Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); }); } } Includes; struct IncludesIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); }); } } IncludesIf; struct RemoveIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { v.erase(remove_if(begin(v), end(v), f), end(v)); return v; }); } } RemoveIf; struct Each_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { f(i); } }); } } Each; struct EachConsPair_impl { template <class T, class value_type = typename T::value_type> friend auto operator|(const T& v, EachConsPair_impl& c) { vector<pair<value_type, value_type>> result; if (size(v) >= 2) { result.reserve(size(v) - 1); for (size_t i = 0; i < size(v) - 1; ++i) { result.emplace_back(v[i], v[i + 1]); } } return result; } } EachConsPair; struct Select_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { using value_type = typename decltype(v)::value_type; vector<value_type> result; for (const auto& i : v) { if (f(i)) result.push_back(i); } return result; }); } } Select; struct Map_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { using result_type = invoke_result_t<F, typename decltype(v)::value_type>; vector<result_type> result; result.reserve(size(v)); for (const auto& i : v) { result.push_back(f(i)); } return result; }); } } Map; struct Indexed_impl { template <class T> friend auto operator|(const T& v, Indexed_impl& c) { using value_type = typename T::value_type; vector<pair<value_type, int>> result; result.reserve(size(v)); int index = 0; for (const auto& i : v) { result.emplace_back(i, index++); } return result; } } Indexed; struct AllOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (!f(i)) return false; } return true; }); } } AllOf; struct AnyOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (f(i)) return true; } return false; }); } } AnyOf; struct NoneOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (f(i)) return false; } return true; }); } } NoneOf; struct Tally_impl { template <class F> auto operator()(size_t max_val) { return Callable([&](auto v) { vector<size_t> result(max_val); for (const auto& i : v) { result[static_cast<size_t>(i)]++; } return result; }); } template <class T, class value_type = typename T::value_type> friend auto operator|(const T& v, Tally_impl& c) { map<value_type, size_t> result; for (const auto& i : v) { result[i]++; } return result; } } Tally; template <class T> auto operator*(const vector<T>& a, size_t n) { T result; for (size_t i = 0; i < n; ++i) { result.insert(result.end(), a.begin(), a.end()); } return result; } auto operator*(string a, size_t n) { string result; for (size_t i = 0; i < n; ++i) { result += a; } return result; } template <class T, class U> auto& operator<<(vector<T>& a, const U& b) { a.insert(a.end(), all(b)); return a; } template <class T> auto& operator<<(string& a, const T& b) { a.insert(a.end(), all(b)); return a; } template <class T, class U> auto operator+(vector<T> a, const U& b) { a << b; return a; } template <class T> auto operator+(string a, const T& b) { a << b; return a; } #line 7 "/home/yuruhiya/programming/library/template/functions.cpp" using namespace std; template <class T = long long> constexpr T TEN(size_t n) { T result = 1; for (size_t i = 0; i < n; ++i) result *= 10; return result; } template <class T, class U, enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr> constexpr auto div_ceil(T n, U m) { return (n + m - 1) / m; } template <class T, class U> constexpr auto div_ceil2(T n, U m) { return div_ceil(n, m) * m; } template <class T> constexpr T triangle(T n) { return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1); } template <class T> constexpr T nC2(T n) { return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1); } template <class T, class U> constexpr auto middle(const T& l, const U& r) { return l + (r - l) / 2; } template <class T, class U, class V> constexpr bool in_range(const T& v, const U& lower, const V& upper) { return lower <= v && v < upper; } template <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr> constexpr bool is_square(T n) { T s = sqrt(n); return s * s == n || (s + 1) * (s + 1) == n; } template <class T = long long> constexpr T BIT(int b) { return T(1) << b; } template <class T> constexpr int BIT(T x, int i) { return (x & (T(1) << i)) ? 1 : 0; } template <class T> constexpr int Sgn(T x) { return (0 < x) - (0 > x); } template <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr> constexpr T Pow(T a, U n) { assert(n >= 0); T result = 1; while (n > 0) { if (n & 1) { result *= a; n--; } else { a *= a; n >>= 1; } } return result; } template <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr> constexpr T Powmod(T a, U n, T mod) { assert(n >= 0); if (a > mod) a %= mod; T result = 1; while (n > 0) { if (n & 1) { result = result * a % mod; n--; } else { a = a * a % mod; n >>= 1; } } return result; } template <class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } return false; } template <class T> bool chmin(T& a, const T& b) { if (a > b) { a = b; return true; } return false; } template <class T> int sz(const T& v) { return v.size(); } template <class T, class U> int lower_index(const T& a, const U& v) { return lower_bound(all(a), v) - a.begin(); } template <class T, class U> int upper_index(const T& a, const U& v) { return upper_bound(all(a), v) - a.begin(); } template <class T> auto Slice(const T& v, size_t i, size_t len) { return i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T(); } template <class T, class U = typename T::value_type> U Gcdv(const T& v) { return accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>); } template <class T, class U = typename T::value_type> U Lcmv(const T& v) { return accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>); } namespace internal { template <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) { if constexpr (N == 1) { return vector(sizes[0], init); } else { int size = sizes[N - 1]; sizes.pop_back(); return vector(size, make_vector<T, N - 1>(sizes, init)); } } } // namespace internal template <class T, size_t N> auto make_vector(const int (&sizes)[N], const T& init = T()) { vector s(rbegin(sizes), rend(sizes)); return internal::make_vector<T, N>(s, init); } #line 9 "/home/yuruhiya/programming/library/template/template.cpp" #if __has_include(<library/dump.hpp>) #include <library/dump.hpp> #define LOCAL #else #define dump(...) ((void)0) #endif template <class T> constexpr T oj_local(const T& oj, const T& local) { #ifndef LOCAL return oj; #else return local; #endif } #line 4 "/home/yuruhiya/programming/library/Graph/HeavyLightDecomposition.cpp" using namespace std; class HLD { int n; vector<vector<int>> graph; vector<int> parent, size, depth; int k; vector<int> head, hld, index; bool builded = false; int calc_size(int v, int p, int d) { parent[v] = p; size[v] = 1; depth[v] = 1; for (int u : graph[v]) { if (u != p) { size[v] += calc_size(u, v, d + 1); } } return size[v]; } void rec(int v, int p, int root) { head[v] = root; index[v] = k; hld[k++] = v; int heavy_vertex = -1, max_size = 0; for (int u : graph[v]) { if (u != p && max_size < size[u]) { max_size = size[u]; heavy_vertex = u; } } if (heavy_vertex == -1) return; rec(heavy_vertex, v, root); for (int u : graph[v]) { if (u != heavy_vertex && u != p) { rec(u, v, u); } } } public: HLD(int _n) : n(_n), graph(_n) {} HLD(const vector<vector<int>>& _graph) : n(_graph.size()), graph(_graph) {} void add_edge(int u, int v) { graph[u].push_back(v); graph[v].push_back(u); builded = false; } void build(int root) { parent.assign(n, -1); size.assign(n, 0); depth.assign(n, 0); calc_size(root, -1, 1); k = 0; head.assign(n, 0); hld.assign(n, 0); index.assign(n, 0); rec(root, -1, root); builded = true; } const vector<int>& get_head() const { assert(builded); return head; } const vector<int>& get_hld() const { assert(builded); return hld; } const vector<int>& get_index() const { assert(builded); return index; } int operator[](int v) const { assert(builded); return index[v]; } template <class F> void each_vertex(int v, int u, F f) const { assert(builded); while (true) { if (index[v] > index[u]) swap(v, u); if (head[v] != head[u]) { f(index[head[u]], index[u]); u = parent[head[u]]; } else { f(index[v], index[u]); break; } } } template <class F> void each_edge(int v, int u, F f) const { assert(builded); while (true) { if (index[v] > index[u]) swap(v, u); if (head[v] != head[u]) { f(index[head[u]], index[u]); u = parent[head[u]]; } else { if (v != u) f(index[v] + 1, index[u]); break; } } } vector<pair<int, int>> query_vertex(int u, int v) { assert(builded); vector<pair<int, int>> result; each_vertex(u, v, [&](int a, int b) { result.emplace_back(a, b); }); return result; } vector<pair<int, int>> query_edge(int u, int v) { assert(builded); vector<pair<int, int>> result; each_edge(u, v, [&](int a, int b) { result.emplace_back(a, b); }); return result; } }; #line 1 "/home/yuruhiya/programming/library/atcoder/lazysegtree.hpp" #line 1 "/home/yuruhiya/programming/library/atcoder/internal_bit.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #line 9 "/home/yuruhiya/programming/library/atcoder/lazysegtree.hpp" namespace atcoder { template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()> struct lazy_segtree { public: lazy_segtree() : lazy_segtree(0) {} lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {} lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector<S>(2 * size, e()); lz = std::vector<F>(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push(r >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template <bool (*g)(S)> int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template <class G> int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template <bool (*g)(S)> int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template <class G> int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } std::vector<S> to_a() { std::vector<S> res(_n); for (int i = 0; i < _n; ++i) { res[i] = get(i); } return res; } private: int _n, size, log; std::vector<S> d; std::vector<F> lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; } // namespace atcoder #line 5 "/home/yuruhiya/programming/library/Math/modint.cpp" using namespace std; template <int MOD> struct modint { using T = long long; T n; constexpr modint(const T x = 0) : n(x % MOD) { if (n < 0) n += MOD; } constexpr int get_mod() const { return MOD; } constexpr modint operator+() const { return *this; } constexpr modint operator-() const { return n ? MOD - n : 0; } constexpr modint& operator++() { if (MOD <= ++n) n = 0; return *this; } constexpr modint& operator--() { if (n <= 0) n = MOD; n--; return *this; } constexpr modint operator++(int) { modint t = *this; ++*this; return t; } constexpr modint operator--(int) { modint t = *this; --*this; return t; } constexpr modint next() const { return ++modint(*this); } constexpr modint pred() const { return --modint(*this); } constexpr modint operator+(const modint& m) const { return modint(*this) += m; } constexpr modint operator-(const modint& m) const { return modint(*this) -= m; } constexpr modint operator*(const modint& m) const { return modint(*this) *= m; } constexpr modint operator/(const modint& m) const { return modint(*this) /= m; } constexpr modint& operator+=(const modint& m) { n += m.n; if (n >= MOD) n -= MOD; return *this; } constexpr modint& operator-=(const modint& m) { n -= m.n; if (n < 0) n += MOD; return *this; } constexpr modint& operator*=(const modint& m) { n = n * m.n % MOD; return *this; } constexpr modint& operator/=(const modint& m) { T a = m.n, b = MOD, u = 1, v = 0; while (b) { T t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } n = n * u % MOD; if (n < 0) n += MOD; return *this; } constexpr bool operator==(const modint& m) const { return n == m.n; } constexpr bool operator!=(const modint& m) const { return n != m.n; } template <class M> constexpr modint pow(M m) const { if (0 <= m) { modint t = n, result = 1; while (m > 0) { if (m & 1) { result *= t; m--; } else { t *= t; m >>= 1; } } return result; } else { return (modint(1) / n).pow(-m); } } template <class M> constexpr modint operator^(M m) const { return pow(m); } friend ostream& operator<<(ostream& os, const modint<MOD>& m) { return os << m.n; } friend istream& operator>>(istream& is, modint<MOD>& m) { long long x; cin >> x; m = modint(x); return is; } }; using mint = modint<1000000007>; using VM = vector<mint>; mint operator""_m(unsigned long long n) { return n; } #line 5 "a.cpp" struct S { mint val, k; }; using F = mint; S op(S a, S b) { return S{a.val + b.val, a.k + b.k}; } S mapping(F f, S x) { return S{x.val + x.k * f, x.k}; } F composition(F f, F g) { return f + g; } S e() { return S{0, 0}; } F id() { return 0; } using SegTree = atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>; int main() { ini(n); VM s = in[n], c = in[n]; HLD hld(n); rep(i, n - 1) { int a = in--, b = in--; hld.add_edge(a, b); } hld.build(0); dump(hld.get_index()); vector<S> ss(n); rep(i, n) { ss[hld[i]] = S{s[i], c[i]}; } SegTree seg(ss); for (int q = in; q--;) { int com = in; if (com == 0) { int x = in--, y = in--; mint z = in; hld.each_vertex(x, y, [&](int p, int q) { seg.apply(p, q + 1, z); }); } else if (com == 1) { int x = in--, y = in--; mint ans = 0; hld.each_vertex(x, y, [&](int p, int q) { ans += seg.prod(p, q + 1).val; }); dump(hld.query_vertex(x, y)); out(ans); } } }