結果

問題 No.235 めぐるはめぐる (5)
ユーザー yuruhiyayuruhiya
提出日時 2020-12-23 13:26:21
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,593 ms / 10,000 ms
コード長 35,218 bytes
コンパイル時間 2,818 ms
コンパイル使用メモリ 230,416 KB
実行使用メモリ 36,224 KB
最終ジャッジ日時 2024-09-21 16:23:01
合計ジャッジ時間 9,374 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,593 ms
35,452 KB
testcase_01 AC 1,046 ms
36,224 KB
testcase_02 AC 1,492 ms
35,664 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "/home/yuruhiya/programming/library/template/template.cpp"
#include <bits/stdc++.h>
#line 6 "/home/yuruhiya/programming/library/template/constants.cpp"

#define rep(i, n) for (int i = 0; i < (n); ++i)
#define FOR(i, m, n) for (int i = (m); i < (n); ++i)
#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)
#define rfor(i, m, n) for (int i = (m); i >= (n); --i)
#define unless(c) if (!(c))
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)

using namespace std;
using ll = long long;
using LD = long double;
using VB = vector<bool>;
using VVB = vector<VB>;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<ll>;
using VVL = vector<VL>;
using VS = vector<string>;
using VD = vector<LD>;
using PII = pair<int, int>;
using VP = vector<PII>;
using PLL = pair<ll, ll>;
using VPL = vector<PLL>;
template <class T> using PQ = priority_queue<T>;
template <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;
constexpr int inf = 1000000000;
constexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;
constexpr long double PI = 3.14159265358979323846, EPS = 1e-12;
#line 7 "/home/yuruhiya/programming/library/template/Input.cpp"
using namespace std;

#ifdef _WIN32
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#define fwrite_unlocked fwrite
#define fflush_unlocked fflush
#endif
class Scanner {
	static int gc() {
		return getchar_unlocked();
	}
	static char next_char() {
		char c;
		read(c);
		return c;
	}
	template <class T> static void read(T& v) {
		cin >> v;
	}
	static void read(char& v) {
		while (isspace(v = gc()))
			;
	}
	static void read(bool& v) {
		v = next_char() != '0';
	}
	static void read(string& v) {
		v.clear();
		for (char c = next_char(); !isspace(c); c = gc()) v += c;
	}
	static void read(int& v) {
		v = 0;
		bool neg = false;
		char c = next_char();
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c); c = gc()) v = v * 10 + (c - '0');
		if (neg) v = -v;
	}
	static void read(long long& v) {
		v = 0;
		bool neg = false;
		char c = next_char();
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c); c = gc()) v = v * 10 + (c - '0');
		if (neg) v = -v;
	}
	static void read(double& v) {
		v = 0;
		double dp = 1;
		bool neg = false, after_dp = false;
		char c = next_char();
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c) || c == '.'; c = gc()) {
			if (c == '.') {
				after_dp = true;
			} else if (after_dp) {
				v += (c - '0') * (dp *= 0.1);
			} else {
				v = v * 10 + (c - '0');
			}
		}
		if (neg) v = -v;
	}
	static void read(long double& v) {
		v = 0;
		long double dp = 1;
		bool neg = false, after_dp = false;
		char c = next_char();
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c) || c == '.'; c = gc()) {
			if (c == '.') {
				after_dp = true;
			} else if (after_dp) {
				v += (c - '0') * (dp *= 0.1);
			} else {
				v = v * 10 + (c - '0');
			}
		}
		if (neg) v = -v;
	}
	template <class T, class U> static void read(pair<T, U>& v) {
		read(v.first);
		read(v.second);
	}
	template <class T> static void read(vector<T>& v) {
		for (auto& e : v) read(e);
	}
	template <size_t N = 0, class T> static void read_tuple_impl(T& v) {
		if constexpr (N < tuple_size_v<T>) {
			read(get<N>(v));
			read_tuple_impl<N + 1>(v);
		}
	}
	template <class... T> static void read(tuple<T...>& v) {
		read_tuple_impl(v);
	}
	struct ReadVectorHelper {
		size_t n;
		ReadVectorHelper(size_t _n) : n(_n) {}
		template <class T> operator vector<T>() {
			vector<T> v(n);
			read(v);
			return v;
		}
	};
	struct Read2DVectorHelper {
		size_t n, m;
		Read2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}
		template <class T> operator vector<vector<T>>() {
			vector<vector<T>> v(n, vector<T>(m));
			read(v);
			return v;
		}
	};

public:
	string read_line() const {
		string v;
		for (char c = gc(); c != '\n' && c != '\0'; c = gc()) v += c;
		return v;
	}
	template <class T> T read() const {
		T v;
		read(v);
		return v;
	}
	template <class T> vector<T> read_vector(size_t n) const {
		vector<T> a(n);
		read(a);
		return a;
	}
	template <class T> operator T() const {
		return read<T>();
	}
	int operator--(int) const {
		return read<int>() - 1;
	}
	ReadVectorHelper operator[](size_t n) const {
		return ReadVectorHelper(n);
	}
	Read2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {
		return Read2DVectorHelper(nm);
	}
	void operator()() const {}
	template <class H, class... T> void operator()(H&& h, T&&... t) const {
		read(h);
		operator()(forward<T>(t)...);
	}

private:
	template <template <class...> class, class...> struct Multiple;
	template <template <class...> class V, class Head, class... Tail>
	struct Multiple<V, Head, Tail...> {
		template <class... Args> using vec = V<vector<Head>, Args...>;
		using type = typename Multiple<vec, Tail...>::type;
	};
	template <template <class...> class V> struct Multiple<V> { using type = V<>; };
	template <class... T> using multiple_t = typename Multiple<tuple, T...>::type;
	template <size_t N = 0, class T> void multiple_impl(T& t) const {
		if constexpr (N < tuple_size_v<T>) {
			auto& vec = get<N>(t);
			using V = typename remove_reference_t<decltype(vec)>::value_type;
			vec.push_back(read<V>());
			multiple_impl<N + 1>(t);
		}
	}

public:
	template <class... T> auto multiple(size_t h) const {
		multiple_t<T...> result;
		while (h--) multiple_impl(result);
		return result;
	}
} in;
#define inputs(T, ...) \
	T __VA_ARGS__;     \
	in(__VA_ARGS__)
#define ini(...) inputs(int, __VA_ARGS__)
#define inl(...) inputs(long long, __VA_ARGS__)
#define ins(...) inputs(string, __VA_ARGS__)
#line 7 "/home/yuruhiya/programming/library/template/Output.cpp"
#include <charconv>
#line 10 "/home/yuruhiya/programming/library/template/Output.cpp"
using namespace std;

struct BoolStr {
	const char *t, *f;
	BoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}
} Yes("Yes", "No"), yes("yes", "no"), YES("YES", "NO"), Int("1", "0");
struct DivStr {
	const char *d, *l;
	DivStr(const char* _d, const char* _l) : d(_d), l(_l) {}
} spc(" ", "\n"), no_spc("", "\n"), end_line("\n", "\n"), comma(",", "\n"),
    no_endl(" ", "");
class Printer {
	BoolStr B{Yes};
	DivStr D{spc};

public:
	void print(int v) const {
		char buf[12]{};
		if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {
			fwrite(buf, sizeof(char), ptr - buf, stdout);
		} else {
			assert(false);
		}
	}
	void print(long long v) const {
		char buf[21]{};
		if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {
			fwrite(buf, sizeof(char), ptr - buf, stdout);
		} else {
			assert(false);
		}
	}
	void print(bool v) const {
		print(v ? B.t : B.f);
	}
	void print(vector<bool>::reference v) const {
		print(v ? B.t : B.f);
	}
	void print(char v) const {
		putchar_unlocked(v);
	}
	void print(const char* v) const {
		fwrite_unlocked(v, 1, strlen(v), stdout);
	}
	void print(double v) const {
		printf("%.20f", v);
	}
	void print(long double v) const {
		printf("%.20Lf", v);
	}
	template <class T> void print(const T& v) const {
		cout << v;
	}
	template <class T, class U> void print(const pair<T, U>& v) const {
		print(v.first);
		print(D.d);
		print(v.second);
	}
	template <class InputIterater>
	void print_range(const InputIterater& begin, const InputIterater& end) const {
		for (InputIterater i = begin; i != end; ++i) {
			if (i != begin) print(D.d);
			print(*i);
		}
	}
	template <class T> void print(const vector<T>& v) const {
		print_range(v.begin(), v.end());
	}
	template <class T, size_t N> void print(const array<T, N>& v) const {
		print_range(v.begin(), v.end());
	}
	template <class T> void print(const vector<vector<T>>& v) const {
		for (size_t i = 0; i < v.size(); ++i) {
			if (i) print(D.l);
			print(v[i]);
		}
	}

	Printer() = default;
	Printer(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}
	Printer& operator()() {
		print(D.l);
		return *this;
	}
	template <class H> Printer& operator()(H&& h) {
		print(h);
		print(D.l);
		return *this;
	}
	template <class H, class... T> Printer& operator()(H&& h, T&&... t) {
		print(h);
		print(D.d);
		return operator()(forward<T>(t)...);
	}
	template <class InputIterator>
	Printer& range(const InputIterator& begin, const InputIterator& end) {
		print_range(begin, end);
		print(D.l);
		return *this;
	}
	template <class T> Printer& range(const T& a) {
		range(a.begin(), a.end());
		return *this;
	}
	template <class... T> void exit(T&&... t) {
		operator()(forward<T>(t)...);
		std::exit(EXIT_SUCCESS);
	}
	Printer& flush() {
		fflush_unlocked(stdout);
		return *this;
	}
	Printer& set(const BoolStr& b) {
		B = b;
		return *this;
	}
	Printer& set(const DivStr& d) {
		D = d;
		return *this;
	}
	Printer& set(const char* t, const char* f) {
		B = BoolStr(t, f);
		return *this;
	}
} out;
#line 3 "/home/yuruhiya/programming/library/template/Step.cpp"
using namespace std;

template <class T> struct Step {
	using value_type = T;

	class iterator {
		value_type a, b, c;

	public:
		constexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}
		constexpr iterator(value_type _b, value_type _c, value_type _s)
		    : a(_b), b(_c), c(_s) {}
		constexpr iterator& operator++() {
			--b;
			a += c;
			return *this;
		}
		constexpr iterator operator++(int) {
			iterator tmp = *this;
			--b;
			a += c;
			return tmp;
		}
		constexpr const value_type& operator*() const {
			return a;
		}
		constexpr const value_type* operator->() const {
			return &a;
		}
		constexpr bool operator==(const iterator& i) const {
			return b == i.b;
		}
		constexpr bool operator!=(const iterator& i) const {
			return !(b == i.b);
		}
		constexpr value_type start() const {
			return a;
		}
		constexpr value_type size() const {
			return b;
		}
		constexpr value_type step() const {
			return c;
		}
	};
	constexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}
	constexpr iterator begin() const {
		return be;
	}
	constexpr iterator end() const {
		return en;
	}
	constexpr value_type start() const {
		return be.start();
	}
	constexpr value_type size() const {
		return be.size();
	}
	constexpr value_type step() const {
		return be.step();
	}
	constexpr value_type sum() const {
		return start() * size() + step() * (size() * (size() - 1) / 2);
	}
	operator vector<value_type>() const {
		return to_a();
	}
	auto to_a() const {
		vector<value_type> result;
		result.reserve(size());
		for (auto i : *this) {
			result.push_back(i);
		}
		return result;
	}

private:
	iterator be, en;
};
template <class T> constexpr auto step(T a) {
	return Step<T>(0, a, 1);
}
template <class T> constexpr auto step(T a, T b) {
	return Step<T>(a, b - a, 1);
}
template <class T> constexpr auto step(T a, T b, T c) {
	return Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);
}
#line 8 "/home/yuruhiya/programming/library/template/Ruby.cpp"
using namespace std;

template <class F> struct Callable {
	F func;
	Callable(const F& f) : func(f) {}
};
template <class T, class F> auto operator|(const T& v, const Callable<F>& c) {
	return c.func(v);
}

struct Sort_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(begin(v), end(v), f);
			return v;
		});
	}
	template <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {
		sort(begin(v), end(v));
		return v;
	}
} Sort;
struct SortBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(begin(v), end(v),
			     [&](const auto& i, const auto& j) { return f(i) < f(j); });
			return v;
		});
	}
} SortBy;
struct RSort_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(rbegin(v), rend(v), f);
			return v;
		});
	}
	template <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {
		sort(rbegin(v), rend(v));
		return v;
	}
} RSort;
struct RSortBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(begin(v), end(v),
			     [&](const auto& i, const auto& j) { return f(i) > f(j); });
			return v;
		});
	}
} RSortBy;
struct Reverse_impl {
	template <class T> friend auto operator|(T v, const Reverse_impl& c) {
		reverse(begin(v), end(v));
		return v;
	}
} Reverse;
struct Unique_impl {
	template <class T> friend auto operator|(T v, const Unique_impl& c) {
		v.erase(unique(begin(v), end(v), end(v)));
		return v;
	}
} Unique;
struct Uniq_impl {
	template <class T> friend auto operator|(T v, const Uniq_impl& c) {
		sort(begin(v), end(v));
		v.erase(unique(begin(v), end(v)), end(v));
		return v;
	}
} Uniq;
struct Rotate_impl {
	auto operator()(int&& left) {
		return Callable([&](auto v) {
			int s = static_cast<int>(size(v));
			assert(-s <= left && left <= s);
			if (0 <= left) {
				rotate(begin(v), begin(v) + left, end(v));
			} else {
				rotate(begin(v), end(v) + left, end(v));
			}
			return v;
		});
	}
} Rotate;
struct Max_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) { return *max_element(begin(v), end(v), f); });
	}
	template <class T> friend auto operator|(T v, const Max_impl& c) {
		return *max_element(begin(v), end(v));
	}
} Max;
struct Min_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) { return *min_element(begin(v), end(v), f); });
	}
	template <class T> friend auto operator|(T v, const Min_impl& c) {
		return *min_element(begin(v), end(v));
	}
} Min;
struct MaxPos_impl {
	template <class T> friend auto operator|(T v, const MaxPos_impl& c) {
		return max_element(begin(v), end(v)) - begin(v);
	}
} MaxPos;
struct MinPos_impl {
	template <class T> friend auto operator|(T v, const MinPos_impl& c) {
		return min_element(begin(v), end(v)) - begin(v);
	}
} MinPos;
struct MaxBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto max_it = begin(v);
			auto max_val = f(*max_it);
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); max_val < val) {
					max_it = it;
					max_val = val;
				}
			}
			return *max_it;
		});
	}
} MaxBy;
struct MinBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto min_it = begin(v);
			auto min_val = f(*min_it);
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); min_val > val) {
					min_it = it;
					min_val = val;
				}
			}
			return *min_it;
		});
	}
} MinBy;
struct MaxOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto max_val = f(*begin(v));
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); max_val < val) {
					max_val = val;
				}
			}
			return max_val;
		});
	}
} MaxOf;
struct MinOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto min_val = f(*begin(v));
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); min_val > val) {
					min_val = val;
				}
			}
			return min_val;
		});
	}
} MinOf;
struct Count_impl {
	template <class V> auto operator()(const V& val) {
		return Callable([&](auto v) { return count(begin(v), end(v), val); });
	}
} Count;
struct CountIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) { return count_if(begin(v), end(v), f); });
	}
} CountIf;
struct Index_impl {
	template <class V> auto operator()(const V& val) {
		return Callable([&](auto v) -> optional<int> {
			auto result = find(begin(v), end(v), val);
			return result != end(v) ? optional(result - begin(v)) : nullopt;
		});
	}
	template <class V> auto operator()(const V& val, size_t i) {
		return Callable([&](auto v) -> optional<int> {
			auto result = find(next(begin(v), i), end(v), val);
			return result != end(v) ? optional(result - begin(v)) : nullopt;
		});
	}
} Index;
struct IndexIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) -> optional<int> {
			auto result = find_if(begin(v), end(v), f);
			return result != end(v) ? optional(result - begin(v)) : nullopt;
		});
	}
} IndexIf;
struct FindIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) -> optional<typename decltype(v)::value_type> {
			auto result = find_if(begin(v), end(v), f);
			return result != end(v) ? optional(*result) : nullopt;
		});
	}
} FindIf;
struct Sum_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			return accumulate(next(begin(v)), end(v), f(*begin(v)),
			                  [&](const auto& a, const auto& b) { return a + f(b); });
		});
	}
	template <class T> friend auto operator|(T v, const Sum_impl& c) {
		return accumulate(begin(v), end(v), typename T::value_type{});
	}
} Sum;
struct Includes {
	template <class V> auto operator()(const V& val) {
		return Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });
	}
} Includes;
struct IncludesIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });
	}
} IncludesIf;
struct RemoveIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) {
			v.erase(remove_if(begin(v), end(v), f), end(v));
			return v;
		});
	}
} RemoveIf;
struct Each_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				f(i);
			}
		});
	}
} Each;
struct EachConsPair_impl {
	template <class T, class value_type = typename T::value_type>
	friend auto operator|(const T& v, EachConsPair_impl& c) {
		vector<pair<value_type, value_type>> result;
		if (size(v) >= 2) {
			result.reserve(size(v) - 1);
			for (size_t i = 0; i < size(v) - 1; ++i) {
				result.emplace_back(v[i], v[i + 1]);
			}
		}
		return result;
	}
} EachConsPair;
struct Select_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			using value_type = typename decltype(v)::value_type;
			vector<value_type> result;
			for (const auto& i : v) {
				if (f(i)) result.push_back(i);
			}
			return result;
		});
	}
} Select;
struct Map_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			using result_type = invoke_result_t<F, typename decltype(v)::value_type>;
			vector<result_type> result;
			result.reserve(size(v));
			for (const auto& i : v) {
				result.push_back(f(i));
			}
			return result;
		});
	}
} Map;
struct Indexed_impl {
	template <class T> friend auto operator|(const T& v, Indexed_impl& c) {
		using value_type = typename T::value_type;
		vector<pair<value_type, int>> result;
		result.reserve(size(v));
		int index = 0;
		for (const auto& i : v) {
			result.emplace_back(i, index++);
		}
		return result;
	}
} Indexed;
struct AllOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				if (!f(i)) return false;
			}
			return true;
		});
	}
} AllOf;
struct AnyOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				if (f(i)) return true;
			}
			return false;
		});
	}
} AnyOf;
struct NoneOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				if (f(i)) return false;
			}
			return true;
		});
	}
} NoneOf;

struct Tally_impl {
	template <class F> auto operator()(size_t max_val) {
		return Callable([&](auto v) {
			vector<size_t> result(max_val);
			for (const auto& i : v) {
				result[static_cast<size_t>(i)]++;
			}
			return result;
		});
	}
	template <class T, class value_type = typename T::value_type>
	friend auto operator|(const T& v, Tally_impl& c) {
		map<value_type, size_t> result;
		for (const auto& i : v) {
			result[i]++;
		}
		return result;
	}
} Tally;

template <class T> auto operator*(const vector<T>& a, size_t n) {
	T result;
	for (size_t i = 0; i < n; ++i) {
		result.insert(result.end(), a.begin(), a.end());
	}
	return result;
}
auto operator*(string a, size_t n) {
	string result;
	for (size_t i = 0; i < n; ++i) {
		result += a;
	}
	return result;
}
template <class T, class U> auto& operator<<(vector<T>& a, const U& b) {
	a.insert(a.end(), all(b));
	return a;
}
template <class T> auto& operator<<(string& a, const T& b) {
	a.insert(a.end(), all(b));
	return a;
}
template <class T, class U> auto operator+(vector<T> a, const U& b) {
	a << b;
	return a;
}
template <class T> auto operator+(string a, const T& b) {
	a << b;
	return a;
}
#line 7 "/home/yuruhiya/programming/library/template/functions.cpp"
using namespace std;

template <class T = long long> constexpr T TEN(size_t n) {
	T result = 1;
	for (size_t i = 0; i < n; ++i) result *= 10;
	return result;
}
template <class T, class U,
          enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>
constexpr auto div_ceil(T n, U m) {
	return (n + m - 1) / m;
}
template <class T, class U> constexpr auto div_ceil2(T n, U m) {
	return div_ceil(n, m) * m;
}
template <class T> constexpr T triangle(T n) {
	return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);
}
template <class T> constexpr T nC2(T n) {
	return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);
}
template <class T, class U> constexpr auto middle(const T& l, const U& r) {
	return l + (r - l) / 2;
}
template <class T, class U, class V>
constexpr bool in_range(const T& v, const U& lower, const V& upper) {
	return lower <= v && v < upper;
}
template <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>
constexpr bool is_square(T n) {
	T s = sqrt(n);
	return s * s == n || (s + 1) * (s + 1) == n;
}
template <class T = long long> constexpr T BIT(int b) {
	return T(1) << b;
}
template <class T> constexpr int BIT(T x, int i) {
	return (x & (T(1) << i)) ? 1 : 0;
}
template <class T> constexpr int Sgn(T x) {
	return (0 < x) - (0 > x);
}
template <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>
constexpr T Pow(T a, U n) {
	assert(n >= 0);
	T result = 1;
	while (n > 0) {
		if (n & 1) {
			result *= a;
			n--;
		} else {
			a *= a;
			n >>= 1;
		}
	}
	return result;
}
template <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>
constexpr T Powmod(T a, U n, T mod) {
	assert(n >= 0);
	if (a > mod) a %= mod;
	T result = 1;
	while (n > 0) {
		if (n & 1) {
			result = result * a % mod;
			n--;
		} else {
			a = a * a % mod;
			n >>= 1;
		}
	}
	return result;
}
template <class T> bool chmax(T& a, const T& b) {
	if (a < b) {
		a = b;
		return true;
	}
	return false;
}
template <class T> bool chmin(T& a, const T& b) {
	if (a > b) {
		a = b;
		return true;
	}
	return false;
}
template <class T> int sz(const T& v) {
	return v.size();
}
template <class T, class U> int lower_index(const T& a, const U& v) {
	return lower_bound(all(a), v) - a.begin();
}
template <class T, class U> int upper_index(const T& a, const U& v) {
	return upper_bound(all(a), v) - a.begin();
}
template <class T> auto Slice(const T& v, size_t i, size_t len) {
	return i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();
}
template <class T, class U = typename T::value_type> U Gcdv(const T& v) {
	return accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);
}
template <class T, class U = typename T::value_type> U Lcmv(const T& v) {
	return accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);
}
namespace internal {
	template <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {
		if constexpr (N == 1) {
			return vector(sizes[0], init);
		} else {
			int size = sizes[N - 1];
			sizes.pop_back();
			return vector(size, make_vector<T, N - 1>(sizes, init));
		}
	}
}  // namespace internal
template <class T, size_t N>
auto make_vector(const int (&sizes)[N], const T& init = T()) {
	vector s(rbegin(sizes), rend(sizes));
	return internal::make_vector<T, N>(s, init);
}
#line 9 "/home/yuruhiya/programming/library/template/template.cpp"
#if __has_include(<library/dump.hpp>)
#include <library/dump.hpp>
#define LOCAL
#else
#define dump(...) ((void)0)
#endif

template <class T> constexpr T oj_local(const T& oj, const T& local) {
#ifndef LOCAL
	return oj;
#else
	return local;
#endif
}
#line 4 "/home/yuruhiya/programming/library/Graph/HeavyLightDecomposition.cpp"
using namespace std;

class HLD {
	int n;
	vector<vector<int>> graph;
	vector<int> parent, size, depth;
	int k;
	vector<int> head, hld, index;
	bool builded = false;

	int calc_size(int v, int p, int d) {
		parent[v] = p;
		size[v] = 1;
		depth[v] = 1;
		for (int u : graph[v]) {
			if (u != p) {
				size[v] += calc_size(u, v, d + 1);
			}
		}
		return size[v];
	}
	void rec(int v, int p, int root) {
		head[v] = root;
		index[v] = k;
		hld[k++] = v;

		int heavy_vertex = -1, max_size = 0;
		for (int u : graph[v]) {
			if (u != p && max_size < size[u]) {
				max_size = size[u];
				heavy_vertex = u;
			}
		}
		if (heavy_vertex == -1) return;
		rec(heavy_vertex, v, root);
		for (int u : graph[v]) {
			if (u != heavy_vertex && u != p) {
				rec(u, v, u);
			}
		}
	}

public:
	HLD(int _n) : n(_n), graph(_n) {}
	HLD(const vector<vector<int>>& _graph) : n(_graph.size()), graph(_graph) {}
	void add_edge(int u, int v) {
		graph[u].push_back(v);
		graph[v].push_back(u);
		builded = false;
	}
	void build(int root) {
		parent.assign(n, -1);
		size.assign(n, 0);
		depth.assign(n, 0);
		calc_size(root, -1, 1);
		k = 0;
		head.assign(n, 0);
		hld.assign(n, 0);
		index.assign(n, 0);
		rec(root, -1, root);
		builded = true;
	}
	const vector<int>& get_head() const {
		assert(builded);
		return head;
	}
	const vector<int>& get_hld() const {
		assert(builded);
		return hld;
	}
	const vector<int>& get_index() const {
		assert(builded);
		return index;
	}
	int operator[](int v) const {
		assert(builded);
		return index[v];
	}

	template <class F> void each_vertex(int v, int u, F f) const {
		assert(builded);
		while (true) {
			if (index[v] > index[u]) swap(v, u);
			if (head[v] != head[u]) {
				f(index[head[u]], index[u]);
				u = parent[head[u]];
			} else {
				f(index[v], index[u]);
				break;
			}
		}
	}
	template <class F> void each_edge(int v, int u, F f) const {
		assert(builded);
		while (true) {
			if (index[v] > index[u]) swap(v, u);
			if (head[v] != head[u]) {
				f(index[head[u]], index[u]);
				u = parent[head[u]];
			} else {
				if (v != u) f(index[v] + 1, index[u]);
				break;
			}
		}
	}
	vector<pair<int, int>> query_vertex(int u, int v) {
		assert(builded);
		vector<pair<int, int>> result;
		each_vertex(u, v, [&](int a, int b) { result.emplace_back(a, b); });
		return result;
	}
	vector<pair<int, int>> query_edge(int u, int v) {
		assert(builded);
		vector<pair<int, int>> result;
		each_edge(u, v, [&](int a, int b) { result.emplace_back(a, b); });
		return result;
	}
};
#line 1 "/home/yuruhiya/programming/library/atcoder/lazysegtree.hpp"



#line 1 "/home/yuruhiya/programming/library/atcoder/internal_bit.hpp"



#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

	namespace internal {

		// @param n `0 <= n`
		// @return minimum non-negative `x` s.t. `n <= 2**x`
		int ceil_pow2(int n) {
			int x = 0;
			while ((1U << x) < (unsigned int)(n))
				x++;
			return x;
		}

		// @param n `1 <= n`
		// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
		int bsf(unsigned int n) {
#ifdef _MSC_VER
			unsigned long index;
			_BitScanForward(&index, n);
			return index;
#else
			return __builtin_ctz(n);
#endif
		}

	}  // namespace internal

}  // namespace atcoder


#line 9 "/home/yuruhiya/programming/library/atcoder/lazysegtree.hpp"
namespace atcoder {

	template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>
	struct lazy_segtree {
	public:
		lazy_segtree() : lazy_segtree(0) {}
		lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
		lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
			log = internal::ceil_pow2(_n);
			size = 1 << log;
			d = std::vector<S>(2 * size, e());
			lz = std::vector<F>(size, id());
			for (int i = 0; i < _n; i++)
				d[size + i] = v[i];
			for (int i = size - 1; i >= 1; i--) {
				update(i);
			}
		}

		void set(int p, S x) {
			assert(0 <= p && p < _n);
			p += size;
			for (int i = log; i >= 1; i--)
				push(p >> i);
			d[p] = x;
			for (int i = 1; i <= log; i++)
				update(p >> i);
		}

		S get(int p) {
			assert(0 <= p && p < _n);
			p += size;
			for (int i = log; i >= 1; i--)
				push(p >> i);
			return d[p];
		}

		S prod(int l, int r) {
			assert(0 <= l && l <= r && r <= _n);
			if (l == r) return e();

			l += size;
			r += size;

			for (int i = log; i >= 1; i--) {
				if (((l >> i) << i) != l) push(l >> i);
				if (((r >> i) << i) != r) push(r >> i);
			}

			S sml = e(), smr = e();
			while (l < r) {
				if (l & 1) sml = op(sml, d[l++]);
				if (r & 1) smr = op(d[--r], smr);
				l >>= 1;
				r >>= 1;
			}

			return op(sml, smr);
		}

		S all_prod() {
			return d[1];
		}

		void apply(int p, F f) {
			assert(0 <= p && p < _n);
			p += size;
			for (int i = log; i >= 1; i--)
				push(p >> i);
			d[p] = mapping(f, d[p]);
			for (int i = 1; i <= log; i++)
				update(p >> i);
		}
		void apply(int l, int r, F f) {
			assert(0 <= l && l <= r && r <= _n);
			if (l == r) return;

			l += size;
			r += size;

			for (int i = log; i >= 1; i--) {
				if (((l >> i) << i) != l) push(l >> i);
				if (((r >> i) << i) != r) push((r - 1) >> i);
			}

			{
				int l2 = l, r2 = r;
				while (l < r) {
					if (l & 1) all_apply(l++, f);
					if (r & 1) all_apply(--r, f);
					l >>= 1;
					r >>= 1;
				}
				l = l2;
				r = r2;
			}

			for (int i = 1; i <= log; i++) {
				if (((l >> i) << i) != l) update(l >> i);
				if (((r >> i) << i) != r) update((r - 1) >> i);
			}
		}

		template <bool (*g)(S)> int max_right(int l) {
			return max_right(l, [](S x) {
				return g(x);
			});
		}
		template <class G> int max_right(int l, G g) {
			assert(0 <= l && l <= _n);
			assert(g(e()));
			if (l == _n) return _n;
			l += size;
			for (int i = log; i >= 1; i--)
				push(l >> i);
			S sm = e();
			do {
				while (l % 2 == 0)
					l >>= 1;
				if (!g(op(sm, d[l]))) {
					while (l < size) {
						push(l);
						l = (2 * l);
						if (g(op(sm, d[l]))) {
							sm = op(sm, d[l]);
							l++;
						}
					}
					return l - size;
				}
				sm = op(sm, d[l]);
				l++;
			} while ((l & -l) != l);
			return _n;
		}

		template <bool (*g)(S)> int min_left(int r) {
			return min_left(r, [](S x) {
				return g(x);
			});
		}
		template <class G> int min_left(int r, G g) {
			assert(0 <= r && r <= _n);
			assert(g(e()));
			if (r == 0) return 0;
			r += size;
			for (int i = log; i >= 1; i--)
				push((r - 1) >> i);
			S sm = e();
			do {
				r--;
				while (r > 1 && (r % 2))
					r >>= 1;
				if (!g(op(d[r], sm))) {
					while (r < size) {
						push(r);
						r = (2 * r + 1);
						if (g(op(d[r], sm))) {
							sm = op(d[r], sm);
							r--;
						}
					}
					return r + 1 - size;
				}
				sm = op(d[r], sm);
			} while ((r & -r) != r);
			return 0;
		}

		std::vector<S> to_a() {
			std::vector<S> res(_n);
			for (int i = 0; i < _n; ++i) {
				res[i] = get(i);
			}
			return res;
		}

	private:
		int _n, size, log;
		std::vector<S> d;
		std::vector<F> lz;

		void update(int k) {
			d[k] = op(d[2 * k], d[2 * k + 1]);
		}
		void all_apply(int k, F f) {
			d[k] = mapping(f, d[k]);
			if (k < size) lz[k] = composition(f, lz[k]);
		}
		void push(int k) {
			all_apply(2 * k, lz[k]);
			all_apply(2 * k + 1, lz[k]);
			lz[k] = id();
		}
	};

}  // namespace atcoder


#line 5 "/home/yuruhiya/programming/library/Math/modint.cpp"
using namespace std;

template <int MOD> struct modint {
	using T = long long;
	T n;
	constexpr modint(const T x = 0) : n(x % MOD) {
		if (n < 0) n += MOD;
	}
	constexpr int get_mod() const {
		return MOD;
	}
	constexpr modint operator+() const {
		return *this;
	}
	constexpr modint operator-() const {
		return n ? MOD - n : 0;
	}
	constexpr modint& operator++() {
		if (MOD <= ++n) n = 0;
		return *this;
	}
	constexpr modint& operator--() {
		if (n <= 0) n = MOD;
		n--;
		return *this;
	}
	constexpr modint operator++(int) {
		modint t = *this;
		++*this;
		return t;
	}
	constexpr modint operator--(int) {
		modint t = *this;
		--*this;
		return t;
	}
	constexpr modint next() const {
		return ++modint(*this);
	}
	constexpr modint pred() const {
		return --modint(*this);
	}
	constexpr modint operator+(const modint& m) const {
		return modint(*this) += m;
	}
	constexpr modint operator-(const modint& m) const {
		return modint(*this) -= m;
	}
	constexpr modint operator*(const modint& m) const {
		return modint(*this) *= m;
	}
	constexpr modint operator/(const modint& m) const {
		return modint(*this) /= m;
	}
	constexpr modint& operator+=(const modint& m) {
		n += m.n;
		if (n >= MOD) n -= MOD;
		return *this;
	}
	constexpr modint& operator-=(const modint& m) {
		n -= m.n;
		if (n < 0) n += MOD;
		return *this;
	}
	constexpr modint& operator*=(const modint& m) {
		n = n * m.n % MOD;
		return *this;
	}
	constexpr modint& operator/=(const modint& m) {
		T a = m.n, b = MOD, u = 1, v = 0;
		while (b) {
			T t = a / b;
			a -= t * b;
			swap(a, b);
			u -= t * v;
			swap(u, v);
		}
		n = n * u % MOD;
		if (n < 0) n += MOD;
		return *this;
	}
	constexpr bool operator==(const modint& m) const {
		return n == m.n;
	}
	constexpr bool operator!=(const modint& m) const {
		return n != m.n;
	}
	template <class M> constexpr modint pow(M m) const {
		if (0 <= m) {
			modint t = n, result = 1;
			while (m > 0) {
				if (m & 1) {
					result *= t;
					m--;
				} else {
					t *= t;
					m >>= 1;
				}
			}
			return result;
		} else {
			return (modint(1) / n).pow(-m);
		}
	}
	template <class M> constexpr modint operator^(M m) const {
		return pow(m);
	}
	friend ostream& operator<<(ostream& os, const modint<MOD>& m) {
		return os << m.n;
	}
	friend istream& operator>>(istream& is, modint<MOD>& m) {
		long long x;
		cin >> x;
		m = modint(x);
		return is;
	}
};
using mint = modint<1000000007>;
using VM = vector<mint>;
mint operator""_m(unsigned long long n) {
	return n;
}
#line 5 "a.cpp"

struct S {
	mint val, k;
};
using F = mint;
S op(S a, S b) {
	return S{a.val + b.val, a.k + b.k};
}
S mapping(F f, S x) {
	return S{x.val + x.k * f, x.k};
}
F composition(F f, F g) {
	return f + g;
}
S e() {
	return S{0, 0};
}
F id() {
	return 0;
}
using SegTree = atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>;

int main() {
	ini(n);
	VM s = in[n], c = in[n];

	HLD hld(n);
	rep(i, n - 1) {
		int a = in--, b = in--;
		hld.add_edge(a, b);
	}
	hld.build(0);
	dump(hld.get_index());

	vector<S> ss(n);
	rep(i, n) {
		ss[hld[i]] = S{s[i], c[i]};
	}
	SegTree seg(ss);
	for (int q = in; q--;) {
		int com = in;
		if (com == 0) {
			int x = in--, y = in--;
			mint z = in;
			hld.each_vertex(x, y, [&](int p, int q) { seg.apply(p, q + 1, z); });
		} else if (com == 1) {
			int x = in--, y = in--;
			mint ans = 0;
			hld.each_vertex(x, y, [&](int p, int q) { ans += seg.prod(p, q + 1).val; });
			dump(hld.query_vertex(x, y));
			out(ans);
		}
	}
}
0