結果
| 問題 |
No.1324 Approximate the Matrix
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2020-12-25 23:30:02 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 71 ms / 2,000 ms |
| コード長 | 5,180 bytes |
| コンパイル時間 | 2,006 ms |
| コンパイル使用メモリ | 207,300 KB |
| 最終ジャッジ日時 | 2025-01-17 07:26:03 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 42 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename T, typename U>
struct PrimalDual {
struct Edge {
int dst, rev;
T cap;
U cost;
Edge(int dst, T cap, U cost, int rev) : dst(dst), cap(cap), cost(cost), rev(rev) {}
};
std::vector<std::vector<Edge>> graph;
PrimalDual(int n, const T TINF, const U UINF) : n(n), TINF(TINF), UINF(UINF), graph(n), prev_v(n, -1), prev_e(n, -1), potential(n, 0), dist(n) {}
void add_edge(int src, int dst, T cap, U cost) {
has_negative_edge |= cost < 0;
graph[src].emplace_back(dst, cap, cost, graph[dst].size());
graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1);
}
U minimum_cost_flow(int s, int t, T flow) {
U res = 0;
if (has_negative_edge) {
bellman_ford(s);
if (dist[t] == UINF) return UINF;
res += calc(s, t, flow);
}
while (flow > 0) {
dijkstra(s);
if (dist[t] == UINF) return UINF;
res += calc(s, t, flow);
}
return res;
}
U minimum_cost_flow(int s, int t) {
U res = 0;
bellman_ford(s);
if (potential[t] >= 0 || dist[t] == UINF) return res;
T tmp = TINF;
res += calc(s, t, tmp);
while (true) {
dijkstra(s);
if (potential[t] >= 0 || dist[t] == UINF) return res;
res += calc(s, t, tmp);
}
}
std::pair<T, U> min_cost_max_flow(int s, int t, T flow) {
T mx = flow;
U cost = 0;
if (has_negative_edge) {
bellman_ford(s);
if (dist[t] == UINF) return {mx - flow, cost};
cost += calc(s, t, flow);
}
while (flow > 0) {
dijkstra(s);
if (dist[t] == UINF) return {mx - flow, cost};
cost += calc(s, t, flow);
}
return {mx - flow, cost};
}
private:
using Pui = std::pair<U, int>;
int n;
const T TINF;
const U UINF;
bool has_negative_edge = false;
std::vector<int> prev_v, prev_e;
std::vector<U> potential, dist;
std::priority_queue<Pui, std::vector<Pui>, std::greater<Pui>> que;
void bellman_ford(int s) {
std::fill(dist.begin(), dist.end(), UINF);
dist[s] = 0;
bool is_updated = true;
for (int step = 0; step < n; ++step) {
is_updated = false;
for (int i = 0; i < n; ++i) {
if (dist[i] == UINF) continue;
for (int j = 0; j < graph[i].size(); ++j) {
Edge e = graph[i][j];
if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) {
dist[e.dst] = dist[i] + e.cost;
prev_v[e.dst] = i;
prev_e[e.dst] = j;
is_updated = true;
}
}
}
if (!is_updated) break;
}
assert(!is_updated);
for (int i = 0; i < n; ++i) {
if (dist[i] != UINF) potential[i] += dist[i];
}
}
void dijkstra(int s) {
std::fill(dist.begin(), dist.end(), UINF);
dist[s] = 0;
que.emplace(0, s);
while (!que.empty()) {
Pui pr = que.top(); que.pop();
int ver = pr.second;
if (dist[ver] < pr.first) continue;
for (int i = 0; i < graph[ver].size(); ++i) {
Edge e = graph[ver][i];
U nx = dist[ver] + e.cost + potential[ver] - potential[e.dst];
if (e.cap > 0 && dist[e.dst] > nx) {
dist[e.dst] = nx;
prev_v[e.dst] = ver;
prev_e[e.dst] = i;
que.emplace(dist[e.dst], e.dst);
}
}
}
for (int i = 0; i < n; ++i) {
if (dist[i] != UINF) potential[i] += dist[i];
}
}
U calc(int s, int t, T &flow) {
T f = flow;
for (int v = t; v != s; v = prev_v[v]) f = std::min(f, graph[prev_v[v]][prev_e[v]].cap);
flow -= f;
for (int v = t; v != s; v = prev_v[v]) {
Edge &e = graph[prev_v[v]][prev_e[v]];
e.cap -= f;
graph[v][e.rev].cap += f;
}
return potential[t] * f;
}
};
int main() {
int n, k; cin >> n >> k;
PrimalDual<int, int> pd(n * 2 + 2, INF, INF);
const int s = n * 2, t = n * 2 + 1;
vector<int> a(n), b(n);
REP(i, n) {
cin >> a[i];
pd.add_edge(s, i, a[i], 0);
}
REP(i, n) {
cin >> b[i];
pd.add_edge(n + i, t, b[i], 0);
}
ll ans = 0;
REP(i, n) REP(j, n) {
int p; cin >> p;
auto f = [&](int x) { return (x - p) * (x - p); };
ans += f(0);
for (int x = 1; x <= a[i] && x <= b[j]; ++x) pd.add_edge(i, n + j, 1, f(x) - f(x - 1));
}
cout << ans + pd.minimum_cost_flow(s, t, k) << '\n';
return 0;
}
emthrm