結果
問題 | No.1320 Two Type Min Cost Cycle |
ユーザー | takytank |
提出日時 | 2020-12-28 00:46:08 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
AC
|
実行時間 | 1,250 ms / 2,000 ms |
コード長 | 28,931 bytes |
コンパイル時間 | 1,492 ms |
コンパイル使用メモリ | 125,584 KB |
実行使用メモリ | 50,920 KB |
最終ジャッジ日時 | 2024-10-01 23:38:03 |
合計ジャッジ時間 | 16,836 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 33 ms
25,236 KB |
testcase_01 | AC | 34 ms
25,252 KB |
testcase_02 | AC | 34 ms
27,208 KB |
testcase_03 | AC | 35 ms
27,156 KB |
testcase_04 | AC | 33 ms
25,112 KB |
testcase_05 | AC | 50 ms
34,968 KB |
testcase_06 | AC | 43 ms
33,972 KB |
testcase_07 | AC | 73 ms
46,660 KB |
testcase_08 | AC | 250 ms
46,700 KB |
testcase_09 | AC | 827 ms
48,872 KB |
testcase_10 | AC | 78 ms
48,552 KB |
testcase_11 | AC | 737 ms
48,876 KB |
testcase_12 | AC | 315 ms
46,704 KB |
testcase_13 | AC | 479 ms
50,920 KB |
testcase_14 | AC | 198 ms
48,880 KB |
testcase_15 | AC | 79 ms
48,680 KB |
testcase_16 | AC | 38 ms
25,368 KB |
testcase_17 | AC | 60 ms
44,728 KB |
testcase_18 | AC | 63 ms
46,516 KB |
testcase_19 | AC | 172 ms
48,440 KB |
testcase_20 | AC | 92 ms
46,588 KB |
testcase_21 | AC | 476 ms
46,692 KB |
testcase_22 | AC | 33 ms
25,264 KB |
testcase_23 | AC | 33 ms
24,896 KB |
testcase_24 | AC | 33 ms
27,280 KB |
testcase_25 | AC | 34 ms
25,136 KB |
testcase_26 | AC | 33 ms
25,244 KB |
testcase_27 | AC | 34 ms
25,396 KB |
testcase_28 | AC | 187 ms
48,752 KB |
testcase_29 | AC | 352 ms
46,888 KB |
testcase_30 | AC | 35 ms
25,908 KB |
testcase_31 | AC | 91 ms
40,236 KB |
testcase_32 | AC | 33 ms
25,184 KB |
testcase_33 | AC | 637 ms
44,668 KB |
testcase_34 | AC | 318 ms
50,656 KB |
testcase_35 | AC | 35 ms
25,112 KB |
testcase_36 | AC | 34 ms
24,984 KB |
testcase_37 | AC | 34 ms
27,212 KB |
testcase_38 | AC | 37 ms
25,168 KB |
testcase_39 | AC | 35 ms
24,912 KB |
testcase_40 | AC | 34 ms
25,368 KB |
testcase_41 | AC | 33 ms
24,900 KB |
testcase_42 | AC | 33 ms
25,368 KB |
testcase_43 | AC | 79 ms
48,796 KB |
testcase_44 | AC | 63 ms
48,556 KB |
testcase_45 | AC | 1,250 ms
48,868 KB |
testcase_46 | AC | 80 ms
43,036 KB |
testcase_47 | AC | 482 ms
48,752 KB |
testcase_48 | AC | 361 ms
48,952 KB |
testcase_49 | AC | 69 ms
38,036 KB |
testcase_50 | AC | 33 ms
25,108 KB |
testcase_51 | AC | 33 ms
25,048 KB |
testcase_52 | AC | 121 ms
39,240 KB |
testcase_53 | AC | 78 ms
34,224 KB |
testcase_54 | AC | 391 ms
44,736 KB |
testcase_55 | AC | 395 ms
48,704 KB |
testcase_56 | AC | 395 ms
46,772 KB |
testcase_57 | AC | 941 ms
46,860 KB |
testcase_58 | AC | 934 ms
48,756 KB |
testcase_59 | AC | 938 ms
48,880 KB |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Globalization; using System.IO; using System.Linq; using System.Numerics; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Text; namespace YukiCoder { class Program { static void Main() { using var cin = new Scanner(); int t = cin.Int(); var (n, m) = cin.Int2(); var to = Helper.Array1(n, x => new List<(int v, long d)>()); for (int i = 0; i < m; i++) { var (u, v) = cin.Int2(-1); long w = cin.Long(); if (t == 0) { to[u].Add((v, w)); to[v].Add((u, w)); } else { to[u].Add((v, w)); } } long inf = 1000000000000000L; long ans = inf; if (t == 1) { var mdcc = new MinimumDirectedClosedCircuit(to, inf); for (int i = 0; i < n; ++i) { ans.UpdateMin(mdcc.Solve(i)); } } else { var mucc = new MinimumUndirectedClosedCircuit(to, inf); for (int i = 0; i < n; ++i) { ans.UpdateMin(mucc.Solve(i)); } } Console.WriteLine(ans == inf ? -1 : ans); } } public class MinimumDirectedClosedCircuit { private readonly List<(int v, long d)>[] graph_; private readonly long[] dist_; private readonly int[] parent_; private readonly int N_; private readonly long inf_; private int last_; private int root_; public MinimumDirectedClosedCircuit(List<(int v, long d)>[] graph, long inf) { graph_ = graph; inf_ = inf; N_ = graph_.Length; dist_ = new long[N_]; parent_ = new int[N_]; } public long Solve(int root){ root_ = root; for (int i = 0; i < N_; ++i) { dist_[i] = inf_; parent_[i] = -1; } long mini = inf_; last_ = -1; var q = new PriorityQueue<(long d, int v), long>(x => x.d, true); q.Enqueue((0, root_)); dist_[root_] = 0; while (q.Count > 0) { var top = q.Dequeue(); int curr = top.v; if (top.d > dist_[curr]) { continue; } foreach (var edge in graph_[curr]) { int next = edge.v; long w = edge.d; if (dist_[next] > dist_[curr] + w) { dist_[next] = dist_[curr] + w; parent_[next] = curr; q.Enqueue((dist_[next], next)); } //根に返って来てるなら閉路候補 if (next == root_ && mini > dist_[curr] + w) { mini = dist_[curr] + w; last_ = curr; } } } return mini; } public List<int> Restore() { var res = new List<int>(); if (last_ == -1) { return res; } int curr = last_; res.Add(curr); while (curr != root_) { curr = parent_[curr]; res.Add(curr); } res.Reverse(); return res; } }; public class MinimumUndirectedClosedCircuit { private readonly List<(int v, long d)>[] graph_; private readonly long[] dist_; private readonly int[] parent_; private readonly int[] label_; private readonly int n_; private readonly long inf_; private int lastL_; private int lastR_; private int root_; public MinimumUndirectedClosedCircuit(List<(int v, long d)>[] graph, long inf) { graph_ = graph; inf_ = inf; n_ = graph_.Length; dist_ = new long[n_]; parent_ = new int[n_]; label_ = new int[n_]; } public long Solve(int root) { root_ = root; for (int i = 0; i < n_; ++i) { dist_[i] = inf_; parent_[i] = -1; } var q = new PriorityQueue<(long d, int v), long>(x => x.d, true); q.Enqueue((0, root_)); dist_[root_] = 0; while (q.Count > 0) { var top = q.Dequeue(); int curr = top.v; if (top.d > dist_[curr]) { continue; } foreach (var edge in graph_[curr]) { int next = edge.v; long w = edge.d; if (parent_[curr] == next) { continue; } if (dist_[next] > dist_[curr] + w) { dist_[next] = dist_[curr] + w; parent_[next] = curr; label_[next] = (curr == root_ ? next : label_[curr]); q.Enqueue((dist_[next], next)); } } } long mini = inf_; lastL_ = -1; lastR_ = -1; for (int l = 0; l < n_; ++l) { if (l == root_) { continue; } foreach (var edge in graph_[l]) { int r = edge.v; long w = edge.d; if (mini <= dist_[l] + dist_[r] + w) { continue; } if ((r == root_ && l != label_[l]) || (r != root_ && label_[l] != label_[r])) { mini = dist_[l] + dist_[r] + w; lastL_ = l; lastR_ = r; } } } return mini; } public List<int> Restore() { var s = new Stack<int>(); var q = new Queue<int>(); var res = new List<int>(); if (lastL_ != -1 && lastR_ != -1) { for (int curr = lastL_; curr != -1; curr = parent_[curr]) { s.Push(curr); } for (int curr = lastR_; curr != root_; curr = parent_[curr]) { q.Enqueue(curr); } while (s.Count > 0) { res.Add(s.Pop()); } while (q.Count > 0) { res.Add(q.Dequeue()); } } return res; } } public class PriorityQueue<TObject, TPriority> where TPriority : IComparable<TPriority> { private readonly Func<TObject, TPriority> selector_; private readonly int reverseFactory_; private TObject[] heap_; public TObject Top => heap_[0]; public int Count { get; private set; } public PriorityQueue( Func<TObject, TPriority> selector, bool reverses = false) : this(1024, selector, reverses) { } public PriorityQueue( int capacity, Func<TObject, TPriority> selector, bool reverses = false) { if (capacity == 0) { capacity = 1024; } heap_ = new TObject[capacity]; selector_ = selector; reverseFactory_ = reverses ? -1 : 1; } public void Enqueue(TObject item) { if (heap_.Length == Count) { Extend(heap_.Length * 2); } var priority = selector_(item); heap_[Count] = item; ++Count; int c = Count - 1; while (c > 0) { int p = (c - 1) >> 1; if (Compare(Priority(p), priority) < 0) { heap_[c] = heap_[p]; c = p; } else { break; } } heap_[c] = item; } public TObject Dequeue() { TObject ret = heap_[0]; int n = Count - 1; var item = heap_[n]; var priority = Priority(n); int p = 0; int c = (p << 1) + 1; while (c < n) { if (c != n - 1 && Compare(Priority(c + 1), Priority(c)) > 0) { ++c; } if (Compare(priority, Priority(c)) < 0) { heap_[p] = heap_[c]; p = c; c = (p << 1) + 1; } else { break; } } heap_[p] = item; Count--; return ret; } public void Clear() => Count = 0; [MethodImpl(MethodImplOptions.AggressiveInlining)] private TPriority Priority(int index) => selector_(heap_[index]); [MethodImpl(MethodImplOptions.AggressiveInlining)] private int Compare(TPriority x, TPriority y) => x.CompareTo(y) * reverseFactory_; [MethodImpl(MethodImplOptions.AggressiveInlining)] private void Extend(int newSize) { var newHeap = new TObject[newSize]; heap_.CopyTo(newHeap, 0); heap_ = newHeap; } } public struct BitFlag { public static BitFlag Begin() => 0; public static BitFlag End(int bitCount) => 1 << bitCount; public static BitFlag FromBit(int bitNumber) => 1 << bitNumber; private readonly int flags_; public int Flag => flags_; public bool this[int bitNumber] => (flags_ & (1 << bitNumber)) != 0; public BitFlag(int flags) { flags_ = flags; } public bool Has(BitFlag target) => (flags_ & target.flags_) == target.flags_; public bool Has(int target) => (flags_ & target) == target; public bool HasBit(int bitNumber) => (flags_ & (1 << bitNumber)) != 0; public BitFlag OrBit(int bitNumber) => (flags_ | (1 << bitNumber)); public BitFlag AndBit(int bitNumber) => (flags_ & (1 << bitNumber)); public BitFlag XorBit(int bitNumber) => (flags_ ^ (1 << bitNumber)); public static BitFlag operator ++(BitFlag src) => new BitFlag(src.flags_ + 1); public static BitFlag operator --(BitFlag src) => new BitFlag(src.flags_ - 1); public static BitFlag operator |(BitFlag lhs, BitFlag rhs) => new BitFlag(lhs.flags_ | rhs.flags_); public static BitFlag operator |(BitFlag lhs, int rhs) => new BitFlag(lhs.flags_ | rhs); public static BitFlag operator |(int lhs, BitFlag rhs) => new BitFlag(lhs | rhs.flags_); public static BitFlag operator &(BitFlag lhs, BitFlag rhs) => new BitFlag(lhs.flags_ & rhs.flags_); public static BitFlag operator &(BitFlag lhs, int rhs) => new BitFlag(lhs.flags_ & rhs); public static BitFlag operator &(int lhs, BitFlag rhs) => new BitFlag(lhs & rhs.flags_); public static bool operator <(BitFlag lhs, BitFlag rhs) => lhs.flags_ < rhs.flags_; public static bool operator <(BitFlag lhs, int rhs) => lhs.flags_ < rhs; public static bool operator <(int lhs, BitFlag rhs) => lhs < rhs.flags_; public static bool operator >(BitFlag lhs, BitFlag rhs) => lhs.flags_ > rhs.flags_; public static bool operator >(BitFlag lhs, int rhs) => lhs.flags_ > rhs; public static bool operator >(int lhs, BitFlag rhs) => lhs > rhs.flags_; public static bool operator <=(BitFlag lhs, BitFlag rhs) => lhs.flags_ <= rhs.flags_; public static bool operator <=(BitFlag lhs, int rhs) => lhs.flags_ <= rhs; public static bool operator <=(int lhs, BitFlag rhs) => lhs <= rhs.flags_; public static bool operator >=(BitFlag lhs, BitFlag rhs) => lhs.flags_ >= rhs.flags_; public static bool operator >=(BitFlag lhs, int rhs) => lhs.flags_ >= rhs; public static bool operator >=(int lhs, BitFlag rhs) => lhs >= rhs.flags_; public static implicit operator BitFlag(int t) => new BitFlag(t); public static implicit operator int(BitFlag t) => t.flags_; public override string ToString() => $"{Convert.ToString(flags_, 2).PadLeft(32, '0')} ({flags_})"; [MethodImpl(MethodImplOptions.AggressiveInlining)] public void ForEachSubBits(Action<BitFlag> action) { for (BitFlag sub = flags_; sub >= 0; --sub) { sub &= flags_; action(sub); } } } public class HashMap<TKey, TValue> : Dictionary<TKey, TValue> { private readonly Func<TKey, TValue> initialzier_; public HashMap(Func<TKey, TValue> initialzier) : base() { initialzier_ = initialzier; } public HashMap(Func<TKey, TValue> initialzier, int capacity) : base(capacity) { initialzier_ = initialzier; } new public TValue this[TKey key] { get { if (TryGetValue(key, out TValue value)) { return value; } else { var init = initialzier_(key); base[key] = init; return init; } } set { base[key] = value; } } public HashMap<TKey, TValue> Merge( HashMap<TKey, TValue> src, Func<TValue, TValue, TValue> mergeValues) { foreach (var key in src.Keys) { this[key] = mergeValues(this[key], src[key]); } return this; } } public struct ModInt { //public const long P = 1000000007; public const long P = 998244353; public const long ROOT = 3; // (924844033, 5) // (998244353, 3) // (1012924417, 5) // (167772161, 3) // (469762049, 3) // (1224736769, 3) private long value_; public ModInt(long value) => value_ = value; public ModInt(long value, bool mods) { if (mods) { value %= P; if (value < 0) { value += P; } } value_ = value; } public static ModInt operator +(ModInt lhs, ModInt rhs) { lhs.value_ = (lhs.value_ + rhs.value_) % P; return lhs; } public static ModInt operator +(long lhs, ModInt rhs) { rhs.value_ = (lhs + rhs.value_) % P; return rhs; } public static ModInt operator +(ModInt lhs, long rhs) { lhs.value_ = (lhs.value_ + rhs) % P; return lhs; } public static ModInt operator -(ModInt lhs, ModInt rhs) { lhs.value_ = (P + lhs.value_ - rhs.value_) % P; return lhs; } public static ModInt operator -(long lhs, ModInt rhs) { rhs.value_ = (P + lhs - rhs.value_) % P; return rhs; } public static ModInt operator -(ModInt lhs, long rhs) { lhs.value_ = (P + lhs.value_ - rhs) % P; return lhs; } public static ModInt operator *(ModInt lhs, ModInt rhs) { lhs.value_ = lhs.value_ * rhs.value_ % P; return lhs; } public static ModInt operator *(long lhs, ModInt rhs) { rhs.value_ = lhs * rhs.value_ % P; return rhs; } public static ModInt operator *(ModInt lhs, long rhs) { lhs.value_ = lhs.value_ * rhs % P; return lhs; } public static ModInt operator /(ModInt lhs, ModInt rhs) { long exp = P - 2; while (exp > 0) { if (exp % 2 > 0) { lhs *= rhs; } rhs *= rhs; exp /= 2; } return lhs; } public static implicit operator ModInt(long n) => new ModInt(n, true); public static ModInt Inverse(ModInt value) => Pow(value, P - 2); public static ModInt Pow(ModInt value, long k) => Pow(value.value_, k); public static ModInt Pow(long value, long k) { long ret = 1; for (k %= P - 1; k > 0; k >>= 1, value = value * value % P) { if ((k & 1) == 1) { ret = ret * value % P; } } return new ModInt(ret); } public static Span<ModInt> NumberTheoreticTransform( Span<int> values, bool inverses = false) { var mods = new ModInt[values.Length]; for (int i = 0; i < mods.Length; i++) { mods[i] = new ModInt(values[i]); } return NumberTheoreticTransform(mods, inverses); } public static Span<ModInt> NumberTheoreticTransform( Span<long> values, bool inverses = false) { var mods = new ModInt[values.Length]; for (int i = 0; i < mods.Length; i++) { mods[i] = new ModInt(values[i]); } return NumberTheoreticTransform(mods, inverses); } public static Span<ModInt> NumberTheoreticTransform( Span<ModInt> a, bool inverses = false) { int n = a.Length; if (n == 1) { return a; } var b = new ModInt[n].AsSpan(); int r = inverses ? (int)(P - 1 - (P - 1) / n) : (int)((P - 1) / n); ModInt s = Pow(ROOT, r); var kp = new ModInt[n / 2 + 1]; kp.AsSpan().Fill(1); for (int i = 0; i < n / 2; ++i) { kp[i + 1] = kp[i] * s; } int l = n / 2; for (int i = 1; i < n; i <<= 1, l >>= 1) { r = 0; for (int j = 0; j < l; ++j, r += i) { s = kp[i * j]; for (int k = 0; k < i; ++k) { var p = a[k + r]; var q = a[k + r + n / 2]; b[k + 2 * r] = p + q; b[k + 2 * r + i] = (p - q) * s; } } var temp = a; a = b; b = temp; } if (inverses) { s = Inverse(n); for (int i = 0; i < n; i++) { a[i] = a[i] * s; } } return a; } public static ModInt[,] NumberTheoreticTransform2D(ModInt[,] a, bool inverses = false) { int h = a.GetLength(0); int w = a.GetLength(1); if (h == 1 && w == 1) { return a; } var b = new ModInt[h, w]; { int n = w; int r = inverses ? (int)(P - 1 - (P - 1) / n) : (int)((P - 1) / n); ModInt s = Pow(ROOT, r); var kp = new ModInt[n / 2 + 1]; kp.AsSpan().Fill(1); for (int i = 0; i < n / 2; ++i) { kp[i + 1] = kp[i] * s; } for (int y = 0; y < h; y++) { int l = n / 2; for (int i = 1; i < n; i <<= 1, l >>= 1) { r = 0; for (int j = 0; j < l; ++j, r += i) { s = kp[i * j]; for (int k = 0; k < i; ++k) { var p = a[y, k + r]; var q = a[y, k + r + n / 2]; b[y, k + 2 * r] = p + q; b[y, k + 2 * r + i] = (p - q) * s; } } var temp = a; a = b; b = temp; } if (inverses) { s = Inverse(n); for (int i = 0; i < n; i++) { a[y, i] = a[y, i] * s; } } } } for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { b[h, w] = 0; } } { int n = h; int r = inverses ? (int)(P - 1 - (P - 1) / n) : (int)((P - 1) / n); ModInt s = Pow(ROOT, r); var kp = new ModInt[n / 2 + 1]; kp.AsSpan().Fill(1); for (int i = 0; i < n / 2; ++i) { kp[i + 1] = kp[i] * s; } for (int x = 0; x < w; x++) { int l = n / 2; for (int i = 1; i < n; i <<= 1, l >>= 1) { r = 0; for (int j = 0; j < l; ++j, r += i) { s = kp[i * j]; for (int k = 0; k < i; ++k) { var p = a[k + r, x]; var q = a[k + r + n / 2, x]; b[k + 2 * r, x] = p + q; b[k + 2 * r + i, x] = (p - q) * s; } } var temp = a; a = b; b = temp; } if (inverses) { s = Inverse(n); for (int i = 0; i < n; i++) { a[i, x] = a[i, x] * s; } } } } return a; } public static Span<ModInt> Convolve(ReadOnlySpan<ModInt> a, ReadOnlySpan<ModInt> b) { int resultLength = a.Length + b.Length - 1; int nttLenght = 1; while (nttLenght < resultLength) { nttLenght <<= 1; } var aa = new ModInt[nttLenght]; a.CopyTo(aa); var bb = new ModInt[nttLenght]; b.CopyTo(bb); var fa = NumberTheoreticTransform(aa); var fb = NumberTheoreticTransform(bb); for (int i = 0; i < nttLenght; i++) { fa[i] *= fb[i]; } var convolved = NumberTheoreticTransform(fa, true); return convolved.Slice(0, resultLength); } public long ToLong() => value_; public override string ToString() => value_.ToString(); } public static class Helper { [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMin<T>(this ref T target, T value) where T : struct, IComparable<T> => target = target.CompareTo(value) > 0 ? value : target; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMin<T>(this ref T target, T value, Action<T> onUpdated) where T : struct, IComparable<T> { if (target.CompareTo(value) > 0) { target = value; onUpdated(value); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMax<T>(this ref T target, T value) where T : struct, IComparable<T> => target = target.CompareTo(value) < 0 ? value : target; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMax<T>(this ref T target, T value, Action<T> onUpdated) where T : struct, IComparable<T> { if (target.CompareTo(value) < 0) { target = value; onUpdated(value); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Array1<T>(int n, T initialValue) where T : struct => new T[n].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Array1<T>(int n, Func<int, T> initializer) => Enumerable.Range(0, n).Select(x => initializer(x)).ToArray(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Fill<T>(this T[] array, T value) where T : struct { array.AsSpan().Fill(value); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Array2<T>(int n, int m, T initialValule) where T : struct => new T[n, m].Fill(initialValule); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Array2<T>(int n, int m, Func<int, int, T> initializer) { var array = new T[n, m]; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { array[i, j] = initializer(i, j); } } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Fill<T>(this T[,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,] array, int i) => MemoryMarshal.CreateSpan<T>(ref array[i, 0], array.GetLength(1)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,] Array3<T>(int n1, int n2, int n3, T initialValue) where T : struct => new T[n1, n2, n3].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,] Fill<T>(this T[,,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,,] array, int i, int j) => MemoryMarshal.CreateSpan<T>(ref array[i, j, 0], array.GetLength(2)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,,] Array4<T>(int n1, int n2, int n3, int n4, T initialValue) where T : struct => new T[n1, n2, n3, n4].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,,] Fill<T>(this T[,,,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0, 0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,,,] array, int i, int j, int k) => MemoryMarshal.CreateSpan<T>(ref array[i, j, k, 0], array.GetLength(3)); private static readonly int[] delta4_ = { 1, 0, -1, 0, 1 }; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void DoIn4(int i, int j, int imax, int jmax, Action<int, int> action) { for (int dn = 0; dn < 4; ++dn) { int d4i = i + delta4_[dn]; int d4j = j + delta4_[dn + 1]; if ((uint)d4i < (uint)imax && (uint)d4j < (uint)jmax) { action(d4i, d4j); } } } private static readonly int[] delta8_ = { 1, 0, -1, 0, 1, 1, -1, -1, 1 }; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void DoIn8(int i, int j, int imax, int jmax, Action<int, int> action) { for (int dn = 0; dn < 8; ++dn) { int d8i = i + delta8_[dn]; int d8j = j + delta8_[dn + 1]; if ((uint)d8i < (uint)imax && (uint)d8j < (uint)jmax) { action(d8i, d8j); } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void ForEachSubBits(int bit, Action<int> action) { for (int sub = bit; sub >= 0; --sub) { sub &= bit; action(sub); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string Reverse(string src) { var chars = src.ToCharArray(); for (int i = 0, j = chars.Length - 1; i < j; ++i, --j) { var tmp = chars[i]; chars[i] = chars[j]; chars[j] = tmp; } return new string(chars); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string Join<T>(this IEnumerable<T> values, string separator = "") => string.Join(separator, values); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string JoinNL<T>(this IEnumerable<T> values) => string.Join(Environment.NewLine, values); } public static class Extensions { public static uint PopCount(uint bits) { bits = (bits & 0x55555555) + (bits >> 1 & 0x55555555); bits = (bits & 0x33333333) + (bits >> 2 & 0x33333333); bits = (bits & 0x0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f); bits = (bits & 0x00ff00ff) + (bits >> 8 & 0x00ff00ff); return (bits & 0x0000ffff) + (bits >> 16 & 0x0000ffff); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int PopCount(this BitFlag bit) => (int)PopCount((uint)bit.Flag); } public class Scanner : IDisposable { private const int BUFFER_SIZE = 1024; private const int ASCII_CHAR_BEGIN = 33; private const int ASCII_CHAR_END = 126; private readonly string filePath_; private readonly Stream stream_; private readonly byte[] buf_ = new byte[BUFFER_SIZE]; private int length_ = 0; private int index_ = 0; private bool isEof_ = false; public Scanner(string file = "") { if (string.IsNullOrWhiteSpace(file)) { stream_ = Console.OpenStandardInput(); } else { filePath_ = file; stream_ = new FileStream(file, FileMode.Open); } Console.SetOut(new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }); } public void Dispose() { Console.Out.Flush(); stream_.Dispose(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public char Char() { byte b; do { b = Read(); } while (b < ASCII_CHAR_BEGIN || ASCII_CHAR_END < b); return (char)b; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public string Next() { var sb = new StringBuilder(); for (var b = Char(); b >= ASCII_CHAR_BEGIN && b <= ASCII_CHAR_END; b = (char)Read()) { sb.Append(b); } return sb.ToString(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public string[] ArrayString(int length) { var array = new string[length]; for (int i = 0; i < length; ++i) { array[i] = Next(); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public int Int() => (int)Long(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public int Int(int offset) => Int() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int) Int2(int offset = 0) => (Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int, int) Int3(int offset = 0) => (Int(offset), Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int, int, int) Int4(int offset = 0) => (Int(offset), Int(offset), Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public int[] ArrayInt(int length, int offset = 0) { var array = new int[length]; for (int i = 0; i < length; ++i) { array[i] = Int(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long Long() { long ret = 0; byte b; bool ng = false; do { b = Read(); } while (b != '-' && (b < '0' || '9' < b)); if (b == '-') { ng = true; b = Read(); } for (; true; b = Read()) { if (b < '0' || '9' < b) { return ng ? -ret : ret; } else { ret = ret * 10 + b - '0'; } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long Long(long offset) => Long() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long) Long2(long offset = 0) => (Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long, long) Long3(long offset = 0) => (Long(offset), Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long, long, long) Long4(long offset = 0) => (Long(offset), Long(offset), Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long[] ArrayLong(int length, long offset = 0) { var array = new long[length]; for (int i = 0; i < length; ++i) { array[i] = Long(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger Big() => new BigInteger(Long()); [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger Big(long offset) => Big() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger) Big2(long offset = 0) => (Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger, BigInteger) Big3(long offset = 0) => (Big(offset), Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger, BigInteger, BigInteger) Big4(long offset = 0) => (Big(offset), Big(offset), Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger[] ArrayBig(int length, long offset = 0) { var array = new BigInteger[length]; for (int i = 0; i < length; ++i) { array[i] = Big(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public double Double() => double.Parse(Next(), CultureInfo.InvariantCulture); [MethodImpl(MethodImplOptions.AggressiveInlining)] public double Double(double offset) => Double() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double) Double2(double offset = 0) => (Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double, double) Double3(double offset = 0) => (Double(offset), Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double, double, double) Double4(double offset = 0) => (Double(offset), Double(offset), Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public double[] ArrayDouble(int length, double offset = 0) { var array = new double[length]; for (int i = 0; i < length; ++i) { array[i] = Double(offset); } return array; } private byte Read() { if (isEof_) { throw new EndOfStreamException(); } if (index_ >= length_) { index_ = 0; if ((length_ = stream_.Read(buf_, 0, BUFFER_SIZE)) <= 0) { isEof_ = true; return 0; } } return buf_[index_++]; } public void Save(string text) { if (string.IsNullOrWhiteSpace(filePath_)) { return; } File.WriteAllText(filePath_ + "_output.txt", text); } } }