結果
問題 | No.186 中華風 (Easy) |
ユーザー |
![]() |
提出日時 | 2020-12-30 05:37:05 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 44 ms / 2,000 ms |
コード長 | 947 bytes |
コンパイル時間 | 249 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 52,480 KB |
最終ジャッジ日時 | 2024-10-06 11:37:40 |
合計ジャッジ時間 | 1,873 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 23 |
ソースコード
def extended_gcd(a, b): """ax + by = gcd(a, b) の整数解 (x, y) を求める""" if b == 0: return a, 1, 0 else: g, y, x = extended_gcd(b, a % b) y -= (a // b) * x return g, x, y def chinese_remainder_theorem(a, m): """すべての i について x = a[i] (mod. m[i]) を満たす x を求める x が存在しない場合は (0, -1) の組、x が存在するときは x = rem (mod. M) を満たす (rem, M) の組を返す""" rem, M = 0, 1 for i in range(len(a)): g, p, q = extended_gcd(M, m[i]) if (a[i] - rem) % g != 0: return 0, -1 tmp = (a[i] - rem) // g * p % (m[i] // g) rem += M * tmp M *= m[i] // g return rem % M, M info = [list(map(int, input().split())) for i in range(3)] x, y = list(zip(*info)) r, m = chinese_remainder_theorem(x, y) if m == -1: print(-1) elif r == 0: print(m) else: print(r)