結果

問題 No.303 割れません
ユーザー Min_25Min_25
提出日時 2015-11-22 16:45:21
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 323 ms / 10,000 ms
コード長 49,826 bytes
コンパイル時間 2,215 ms
コンパイル使用メモリ 107,740 KB
実行使用メモリ 8,160 KB
最終ジャッジ日時 2024-09-13 17:10:16
合計ジャッジ時間 6,178 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 114 ms
6,944 KB
testcase_04 AC 300 ms
7,332 KB
testcase_05 AC 302 ms
8,160 KB
testcase_06 AC 301 ms
8,028 KB
testcase_07 AC 311 ms
7,592 KB
testcase_08 AC 319 ms
8,032 KB
testcase_09 AC 319 ms
7,896 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 301 ms
7,780 KB
testcase_12 AC 323 ms
7,860 KB
testcase_13 AC 173 ms
6,940 KB
testcase_14 AC 86 ms
6,944 KB
testcase_15 AC 54 ms
6,944 KB
testcase_16 AC 1 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cstdint>
#include <cassert>

#include <iostream>
#include <vector>
#include <algorithm>
#include <string>

// M(n): O(n^1.47)

#define HAVE_UINT128

using uint32 = uint32_t;
using int64 = int64_t;
using uint64 = uint64_t;

#ifdef HAVE_UINT128
  using uint128 = __uint128_t;
  using word_t = uint64;
  using dword_t = uint128;
#else
  using word_t = uint32;
  using dword_t = uint64;
#endif

namespace bits {

inline constexpr uint32 pop_count(uint32 n) {
  return __builtin_popcount(n);
}

inline constexpr uint32 pop_count(uint64 n) {
  return __builtin_popcountll(n);
}

inline constexpr uint32 ctz(uint32 n) {
  return __builtin_ctz(n);
}

inline constexpr uint32 ctz(uint64 n) {
  return __builtin_ctzll(n);
}

inline constexpr uint32 clz(uint32 n) {
  return __builtin_clz(n);
}

inline constexpr uint32 clz(uint64 n) {
  return __builtin_clzll(n);
}

template <typename T>
inline constexpr uint32 ilog2(T n) {
  return n == 0 ? 0 : (sizeof(n) * 8 - 1) - clz(n);
}

#ifdef HAVE_UINT128
inline uint64 floor_div_small(uint128 a, uint64 b) {
  uint64 q, r;
  __asm__ (
    "divq\t%4"
    : "=a"(q), "=d"(r)
    : "0"(uint64(a)), "1"(uint64(a >> 64)), "rm"(b)
  );
  return q;
}
#else
inline uint32 floor_div_small(uint64 a, uint32 b) {
  uint32 q, r;
  __asm__ (
    "divl\t%4"
    : "=a"(q), "=d"(r)
    : "0"(uint32(a)), "1"(uint32(a >> 32)), "rm"(b)
  );
  return q;
}
#endif

inline word_t mul_inv(word_t n) {
  word_t x = n;
  while (1) {
    word_t t = n * x;
    if (t == 1) {
      break;
    }
    x *= 2 - t;
  }
  return x;
}

}

struct FastDiv {
  FastDiv() {}
  FastDiv(word_t n) {
    if (n == 1) {
      shamt = 0;
      magic_num = 1;
    } else {
      shamt = (8 * sizeof(dword_t)) - 1 - bits::clz(n - 1);
      magic_num = bits::floor_div_small((dword_t(1) << shamt) + n - 1, n);
    }
    mod = n;
  }

  friend word_t operator / (word_t n, FastDiv d) {
    return (dword_t(n) * d.magic_num) >> d.shamt;
  }

  friend word_t& operator /= (word_t& n, FastDiv d) {
    return n = n / d;
  }

  friend word_t operator % (word_t n, FastDiv d) {
    return n - n / d * d.mod;
  }

  friend word_t& operator %= (word_t& n, FastDiv d) {
    return n = n % d;
  }

  word_t magic_num;
  uint32 shamt;
  word_t mod;
};

class FastDiv21 {
public:
  FastDiv21(word_t n) {
    shamt_ = bits::clz(n);
    d_ = n << shamt_;
    v_ = reciprocal(d_);
  };
  FastDiv21() {}

  word_t divisor() const {
    return d_ >> shamt_;
  }

  // divl in x86.
  static void divmod(
      dword_t u, FastDiv21 fd, word_t& ret_q, word_t& ret_r) {
    u <<= fd.shamt_;
    word_t u_hi = u >> (8 * sizeof(word_t));
    word_t u_lo = word_t(u);
    dword_t q = dword_t(u_hi) * fd.v_ + u;
    word_t q_hi = (q >> (8 * sizeof(word_t))) + 1;
    word_t r = u_lo - q_hi * fd.d_;
    if (r > word_t(q)) {
      q_hi -= 1;
      r += fd.d_;
    }
    if (r >= fd.d_) {
      q_hi += 1;
      r -= fd.d_;
    }
    ret_q = q_hi;
    ret_r = r >> fd.shamt_;
  }

  friend word_t operator / (dword_t n, FastDiv21 fd) {
    return FastDiv21::div(n, fd);
  }

  friend dword_t& operator /= (dword_t& n, FastDiv21 fd) {
    return n = n / fd;
  }

  friend word_t operator % (dword_t n, FastDiv21 fd) {
    return FastDiv21::mod(n, fd);
  }

  friend dword_t& operator %= (dword_t& n, FastDiv21 fd) {
    return n = n % fd;
  }

private:
  static word_t div(dword_t u, FastDiv21 fd) {
    word_t q, dummy;
    divmod(u, fd, q, dummy);
    return q;
  }

  static word_t mod(dword_t u, FastDiv21 fd) {
    word_t dummy, r;
    divmod(u, fd, dummy, r);
    return r;
  }
  word_t reciprocal(word_t n) const {
    return bits::floor_div_small(~(dword_t(n) << (sizeof(word_t) * 8)), n);
  }

  word_t d_;
  uint32 shamt_;
  word_t v_;
};

class BigInt {
public:
  enum {
    W_BITS = sizeof(word_t) * 8,
#ifdef HAVE_UINT128
    MUL_TOOM22_THRESHOLD = 24,  // words
    MUL_TOOM33_THRESHOLD = 120, // >= 4 words
    SQ_TOOM22_THRESHOLD = 32,   // words
    SQ_TOOM33_THRESHOLD = 160,  // >= 4 words
    INT_THRESHOLD = 64,         // words
    STR_THRESHOLD = 1 << 12,    // bits
    DIVMOD_THRESHOLD = 1 << 13, // bits
#else
    MUL_TOOM22_THRESHOLD = 16,  // words
    MUL_TOOM33_THRESHOLD = 80,  // >= 4 words
    SQ_TOOM22_THRESHOLD = 28,   // words
    SQ_TOOM33_THRESHOLD = 140,  // >= 4 words
    INT_THRESHOLD = 64,         // words
    STR_THRESHOLD = 1 << 9,     // bits
    DIVMOD_THRESHOLD = 1 << 12, // bits
#endif
  };

static_assert(MUL_TOOM33_THRESHOLD >= 4, "mul_toom33");
static_assert(SQ_TOOM33_THRESHOLD >= 4, "sq_toom33");

public:
  struct BarrettReduction {
    ~BarrettReduction() {
      delete divisor;
      delete reciprocal;
    }
    BarrettReduction() : divisor(nullptr), reciprocal(nullptr), shamt(0) {}
    BarrettReduction(BigInt* d, BigInt* r, uint32 s) :
       divisor(d), reciprocal(r), shamt(s) {}

    static void divmod(const BigInt& n, const BarrettReduction& d, BigInt& q, BigInt& r) {
      if (d.reciprocal == nullptr) {
        return BigInt::divmod(n, *d.divisor, q, r);
      }
      q = ((n >> (d.shamt - 1)) * *d.reciprocal) >> (d.shamt + 1);
      r = n - q * *d.divisor;
      while (r >= *d.divisor) {
        r -= *d.divisor;
        q += 1;
      }
    }

    BigInt* divisor;
    BigInt* reciprocal;
    uint32 shamt;
  };

  struct BaseData {
    BaseData(uint32 base, bool lower) : base_s(base), lower(lower) {
      fd = FastDiv(base);
      word_t lim = (word_t(1) << (W_BITS - 1)) - 1;
      base_l = 1;
      e = 0;
      while (lim >= base_s) {
        base_l *= base_s;
        lim /= fd;
        e += 1;
      }
      fd21 = FastDiv21(base_l);
    }

    FastDiv fd;
    FastDiv21 fd21;
    word_t base_s;
    word_t base_l;
    uint32 e;
    bool lower;
  private:
    BaseData() {}
  };

  using container_t = std::vector<word_t>;

private:
  struct _bigint_t {
    _bigint_t(int s, const word_t* d, uint32 sz) : sign(s), data(const_cast<word_t*>(d)), size(sz) {}
    _bigint_t(word_t* d) : sign(0), data(d), size(0) {}
    _bigint_t() {}

    int sign;
    word_t* data;
    uint32 size;
  };

public:
  BigInt() : sign_(0) {
    n_ = container_t(1, 0);
  }
  BigInt(int n) : sign_(n < 0) {
    n_ = container_t(1, uint32(std::abs(n))); // fixed
  }
  BigInt(uint32 n) : sign_(0) {
    n_ = container_t(1, n);
  }

#ifdef HAVE_UINT128
  BigInt(int64 n) : sign_(n < 0) {
    n_ = container_t(1, std::abs(n));
  }
  BigInt(uint64 n) : sign_(0) {
    n_ = container_t(1, n);
  }
  inline operator uint64() const {
    uint64 ret = (*this)[0];
    if (is_neg()) {
      ret = -ret;
    }
    return ret;
  }
#else
  BigInt(int64 n) : sign_(n < 0) {
    n_ = container_t(2);
    (*this)[0] = n;
    (*this)[1] = std::abs(int(n >> W_BITS));
  }
  BigInt(uint64 n) : sign_(0) {
    n_ = container_t(2);
    (*this)[0] = n;
    (*this)[1] = n >> W_BITS;
  }
  inline operator uint64() const {
    uint64 ret = (size() >= 2 ? ((uint64((*this)[1]) << 32) | (*this)[0]) : (*this)[0]);
    if (is_neg()) {
      ret = -ret;
    }
    return ret;
  }
#endif
  BigInt(const char* cstr, uint32 base=10) {
    _int(cstr, std::strlen(cstr), base, *this);
  }

  BigInt(const std::string& str, uint32 base=10) {
    _int(str.c_str(), str.size(), base, *this);
  }

  BigInt(word_t size, int n) : sign_(n < 0) {
    assert(size > 0);
    n_ = container_t(size, 0);
    n_[0] = n;
  }

  BigInt(const BigInt& n) {
    this->sign_ = n.sign_;
    this->n_ = n.n_;
  }

  // container

  inline uint32 size() const {
    return n_.size();
  }

  void push_back(word_t w) {
    n_.push_back(w);
  }

  void resize(uint32 size) {
    if (size == 0) {
      set_zero();
    } else {
      n_.resize(size, 0);
    }
  }

  inline word_t operator [] (uint32 idx) const {
    return n_[idx];
  }

  inline word_t& operator [] (uint32 idx) {
    return n_[idx];
  }

  inline word_t* data() {
    return n_.data();
  }

  inline const word_t* data() const {
    return n_.data();
  }

  // basic

  void change_sign() {
    if (!is_zero()) {
      sign_ ^= 1;
    }
  }

  void set_sign(int s) {
    if (!is_zero()) {
      sign_ = s;
    }
  }

  void clear_sign() {
    sign_ = 0;
  }

  int sign() const {
    return sign_;
  }

  bool is_neg() const {
    return sign_ == 1;
  }

  bool is_zero() const {
    return size() == 1 && (*this)[0] == 0;
  }

  bool is_one() const {
    // unsigned
    return size() == 1 && (*this)[0] == 1;
  }

  BigInt abs() const {
    BigInt ret = BigInt(*this);
    ret.clear_sign();
    return ret;
  }

  void set_zero() {
    resize(1);
    clear_sign();
    (*this)[0] = 0;
  }

  void normalize() {
    for (int i = size() - 1; i >= 0; --i) {
      if ((*this)[i]) {
        return resize(i + 1);
      }
    }
    return set_zero();
  }

  uint32 bit_length() const {
    if (is_zero()) {
      return 0;
    }
    uint32 len = size();
    return W_BITS * len - bits::clz((*this)[len - 1]);
  }

  static uint32 bits_to_words(uint32 bits) {
    return (bits + W_BITS - 1) / W_BITS;
  }

  uint32 pop_count() const {
    uint32 ret = 0;
    for (uint32 i = 0; i < this->size(); ++i) {
      ret += bits::pop_count((*this)[i]);
    }
    return ret;
  }

  static BigInt mask(uint32 bit_length) {
    if (bit_length == 0) {
      return BigInt();
    }
    BigInt ret = BigInt();
    uint32 ret_size = 1 + (bit_length - 1) / W_BITS;
    ret.resize(ret_size);
    for (uint32 i = 0; i < ret_size; ++i) {
      ret[i] = ~word_t(0);
    }
    ret[ret_size - 1] &= ~word_t(0) >> ((W_BITS - bit_length) & (W_BITS - 1));
    return ret;
  }

  // string

  std::string str(uint32 base=10, bool lower=true) const {
    if (is_zero()) {
      return "0";
    }
    BaseData bdata = BaseData(base, lower);
    return _fast_str(bdata);
  }

  // relational

  bool operator == (const BigInt& rhs) const {
    if (this->is_neg() ^ rhs.is_neg()) {
      return false;
    }
    if (size() != rhs.size()) {
      return false;
    }
    for (uint32 i = 0; i < rhs.size(); ++i) {
      if ((*this)[i] != rhs[i]) {
        return false;
      }
    }
    return true;
  }

  bool operator != (const BigInt& rhs) const {
    return !(*this == rhs);
  }

  bool operator < (const BigInt& rhs) const {
    if (this->is_neg()) {
      if (!rhs.is_neg()) {
        return true;
      } else {
        return _ucomp(rhs, *this, false);
      }
    } else {
      if (rhs.is_neg()) {
        return false;
      } else {
        return _ucomp(*this, rhs, false);
      }
    }
  }

  /* slow */
  bool operator < (const int rhs) const {
    return *this < BigInt(rhs);
  }

#ifndef HAVE_UINT128
  /* tmp */
  bool operator < (const uint64 rhs) const {
    return *this < BigInt(rhs);
  }
#endif

  bool operator < (const word_t rhs) const {
    if (is_neg()) {
      return true;
    }
    return !(size() >= 2) && (*this)[0] < rhs;
  }

  bool operator <= (const BigInt& rhs) const {
    if (this->is_neg()) {
      if (!rhs.is_neg()) {
        return true;
      } else {
        return _ucomp(rhs, *this, true);
      }
    } else {
      if (rhs.is_neg()) {
        return false;
      } else {
        return _ucomp(*this, rhs, true);
      }
    }
  }

  bool operator <= (const word_t rhs) const {
    if (is_neg()) {
      return true;
    }
    return !(size() >= 2) && (*this)[0] <= rhs;
  }

  bool operator >= (const BigInt& rhs) const {
    return rhs <= *this;
  }

  bool operator >= (const word_t rhs) const {
    return !(*this < rhs);
  }

  bool operator > (const BigInt& rhs) const {
    return rhs < *this;
  }

  bool operator > (const word_t rhs) const {
    return !(*this <= rhs);
  }

  // unary operator

  bool operator ! () const {
    return is_zero();
  }

  BigInt operator + () const {
    return BigInt(*this);
  }

  BigInt operator - () const {
    BigInt ret = BigInt(*this);
    ret.change_sign();
    return ret;
  }

  // arith

  BigInt operator + (const BigInt& rhs) const {
    BigInt res;
    _add(*this, rhs, false, res);
    return res;
  }

  /* slow */
  BigInt operator + (const int rhs) const {
    BigInt res;
    _add(*this, BigInt(rhs), false, res);
    return res;
  }

  BigInt& operator += (const BigInt& rhs) {
    _add(*this, rhs, false, *this);
    return *this;
  }

  BigInt operator - (const BigInt& rhs) const {
    BigInt res;
    _add(*this, rhs, true, res);
    return res;
  }

  /* slow */
  BigInt operator - (const int rhs) const {
    BigInt res;
    _add(*this, BigInt(rhs), true, res);
    return res;
  }

  BigInt& operator -= (const BigInt& rhs) {
    _add(*this, rhs, true, *this);
    return *this;
  }

  BigInt operator * (const BigInt& rhs) const {
    BigInt ret;
    _mul(*this, rhs, ret);
    return ret;
  }

  BigInt operator * (const word_t rhs) const {
    BigInt ret;
    _mul1(*this, rhs, ret);
    return ret;
  }

  BigInt& operator *= (const BigInt& rhs) {
    return *this = *this * rhs;
  }

  BigInt& operator *= (const word_t rhs) {
    _mul1(*this, rhs, *this);
    return *this;
  }

  BigInt operator / (const BigInt& rhs) const {
    BigInt q, r;
    divmod(*this, rhs, q, r);
    return q;
  }

  BigInt operator / (const word_t rhs) const {
    BigInt ret;
    word_t dummy;
    divmod_n1(*this, rhs, ret, dummy);
    return ret;
  }

  BigInt operator % (const BigInt& rhs) const {
    BigInt q, r;
    divmod(*this, rhs, q, r);
    return r;
  }

  word_t operator % (const word_t rhs) const {
    BigInt dummy;
    word_t ret;
    divmod_n1(*this, rhs, dummy, ret);
    return ret;
  }

  static void divmod(const BigInt& a, const BigInt& b, BigInt& q, BigInt& r) {
    /* sign */
    _fast_udivmod(a, b, q, r);
  }

  static void divmod_n1(const BigInt& n, const word_t d, BigInt& qs, word_t& r) {
    /* sign */
    auto fd = FastDiv21(d);
    return divmod_n1(n, fd, qs, r);
  }

  static void divmod_n1(const BigInt& n, const FastDiv21 fd, BigInt& qs, word_t& r) {
    const word_t d = fd.divisor();
    uint32 size = n.size();
    r = n[size - 1];
    word_t q = 0;
    if (r >= d) {
      FastDiv21::divmod(r, fd, q, r);
      qs.resize(size);
      qs[size - 1] = q;
    } else {
      qs.resize(size - 1);
    }
    for (int i = size - 2; i >= 0; --i) {
      FastDiv21::divmod((dword_t(r) << W_BITS) | n[i], fd, q, r);
      qs[i] = q;
    }
  }

  // logical [unsigned]

  BigInt operator & (const BigInt& rhs) const {
    if (size() > rhs.size()) {
      return rhs & *this;
    }
    BigInt ret = BigInt(*this);
    _land(ret.data(), rhs.data(), ret.size());
    ret.normalize();
    return ret;
  }

  BigInt operator & (const int rhs) const {
    return BigInt((*this)[0] & rhs);
  }

  BigInt& operator &= (const BigInt& rhs) {
    if (size() > rhs.size()) {
      resize(rhs.size());
    }
    _land(this->data(), rhs.data(), this->size());
    this->normalize();
    return *this;
  }

  BigInt operator ^ (const BigInt& rhs) const {
    if (size() < rhs.size()) {
      return rhs ^ *this;
    }
    BigInt ret = BigInt(*this);
    _lxor(ret.data(), rhs.data(), rhs.size());
    ret.normalize();
    return ret;
  }

  BigInt& operator ^= (const BigInt& rhs) {
    if (size() < rhs.size()) {
      resize(rhs.size());
    }
    _lxor(this->data(), rhs.data(), this->size());
    this->normalize();
    return *this;
  }

  BigInt operator | (const BigInt& rhs) const {
    if (size() < rhs.size()) {
      return rhs | *this;
    }
    BigInt ret = BigInt(*this);
    _lor(ret.data(), rhs.data(), rhs.size());
    return ret;
  }

  BigInt& operator |= (const BigInt& rhs) {
    if (size() < rhs.size()) {
      resize(rhs.size());
    }
    _lor(this->data(), rhs.data(), rhs.size());
    return *this;
  }

  // shift [unsigned]

  BigInt operator << (int shamt) const {
    if (shamt < 0) {
      return *this >> -shamt;
    }
    if (shamt == 0) {
      return BigInt(*this);
    }
    if (is_zero()) {
      return BigInt();
    }
    BigInt ret = BigInt();
    uint32 bit_len = bit_length();
    ret.resize(bits_to_words(bit_len + shamt));
    _lshift(this->data(), this->size(), shamt, ret.data(), ret.size());
    return ret;
  }

  BigInt operator << (uint32 shamt) const {
    return *this << int(shamt);
  }

  BigInt& operator <<= (int shamt) {
    if (shamt < 0) {
      return *this >>= -shamt;
    }
    if (shamt == 0) {
      return *this;
    }
    if (is_zero()) {
      return *this;
    }
    uint32 bit_len = bit_length();
    uint32 size = this->size();
    this->resize(bits_to_words(bit_len + shamt));
    _lshift(this->data(), size, shamt, this->data(), this->size());
    return *this;
  }

  BigInt& operator <<= (uint32 shamt) {
    return *this <<= int(shamt);
  }

  BigInt operator >> (int shamt) const {
    if (shamt < 0) {
      return *this << -shamt;
    }
    if (shamt == 0) {
      return BigInt(*this);
    }
    if (is_zero()) {
      return BigInt();
    }
    uint32 bit_len = bit_length();
    if (bit_len <= uint32(shamt)) {
      return BigInt();
    }
    BigInt ret = BigInt();
    ret.resize(bits_to_words(bit_len - shamt));
    _rshift(this->data(), this->size(), shamt, ret.data(), ret.size());
    return ret;
  }

  BigInt operator >> (uint32 shamt) const {
    return *this >> int(shamt);
  }

  BigInt& operator >>= (int shamt) {
    if (shamt < 0) {
      return *this <<= -shamt;
    }
    if (shamt == 0) {
      return *this;
    }
    if (is_zero()) {
      return *this;
    }
    uint32 bit_len = bit_length();
    if (bit_len <= uint32(shamt)) {
      this->set_zero();
      return *this;
    }
    uint32 ret_size = bits_to_words(bit_len - shamt);
    _rshift(this->data(), this->size(), shamt, this->data(), ret_size);
    this->resize(ret_size);
    return *this;
  }

  BigInt& operator >>= (uint32 shamt) {
    return *this >>= int(shamt);
  }

  // subinteger ? strip ?
  BigInt subinteger(const uint32 bit_beg, uint32 bit_end) const {
    uint32 bit_len = bit_length();
    if (bit_end > bit_len) {
      bit_end = bit_len;
    }
    if (bit_beg >= bit_end) {
      return BigInt(0);
    }
    uint32 bit_size = bit_end - bit_beg;
    uint32 ret_size = bits_to_words(bit_size);
    uint32 in_size = bits_to_words(bit_end);
    BigInt ret = BigInt(ret_size, 0);
    _rshift(this->data(), in_size, bit_beg, ret.data(), ret_size);
    word_t mask = ~word_t(0) >> ((W_BITS - bit_size) & (W_BITS - 1));
    ret[ret_size - 1] &= mask;
    ret.normalize();
    return ret;
  }

  // functions

  BigInt isqrt() const {
    if (is_neg()) {
      assert(0);
    }
    BigInt s, r;
    _isqrt(*this, s, r);
    return s;
  }

  BigInt sqrt() const {
    return isqrt();
  }

  BigInt pow(word_t e) const {
    BigInt ret = BigInt(1);
    if (e == 0) {
      return ret;
    }
    word_t mask = word_t(1) << bits::ilog2(e);
    while (mask) {
      if (mask & e) {
        ret *= *this;
      }
      mask >>= 1;
      if (!mask) {
        break;
      }
      ret *= ret;
    }
    return ret;
  }

  static BigInt fib(uint32 n) {
    BigInt a, b;
    _fib(n, a, b);
    return a;
  }

  static void fib(uint32 n, BigInt& a, BigInt& b) {
    _fib(n, a, b); 
  }

  // output

  friend std::ostream & operator << (std::ostream& os, const BigInt& n) {
    return os << n.str();
  }

private:
  static BigInt _int_small(uint32 size, const word_t* smalls, const word_t base) {
    BigInt ret;
    for (int i = size - 1; i >= 0; --i) {
      word_t c = _umul1_add(ret.data(), ret.size(), base, ret.data(), smalls[i]);
      if (c) {
        ret.push_back(c);
      }
    }
    return ret;
  }

  static BigInt _int_rec(uint32 size, uint32 e, word_t base_l,
    const word_t* smalls, const std::vector<BigInt>& large_bases) {

    if (size <= INT_THRESHOLD) {
      return _int_small(size, smalls, base_l);
    } else {
      uint32 d = 1u << e;
      if (size > d) {
        return _int_rec(d, e - 1, base_l, smalls , large_bases) + 
               _int_rec(size - d, e - 1, base_l, smalls + d, large_bases) * 
                 large_bases[e];
      } else {
        return _int_rec(size, e - 1, base_l, smalls , large_bases);
      }
    }
  }

  static void _int(const char* cstr, uint32 size, uint32 base, BigInt& res) {
    static const word_t char_to_word[128] = {
       0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
       0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
       0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
       0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  0,  0,  0,  0,  0,  0,
       0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
      25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,  0,  0,  0,  0,  0,
       0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
      25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,  0,  0,  0,  0,  0
    };

    res.set_zero();

    if (size == 0) {
      return;
    }

    bool neg = false;

    uint32 pos = 0;
    if (cstr[pos] == '-') {
      neg = true;
      ++pos;
    }

    word_t lim = ~word_t(0);
    word_t base_l = 1;

    auto fd = FastDiv(base);
    uint32 e = 0;
    while (lim >= base) {
      lim /= fd;
      e += 1;
      base_l *= base;
    }

    // cstr => word_size

    uint32 size_s = (size - pos + e - 1) / e;
    auto smalls = std::vector<word_t>(size_s, 0);

    for (uint32 i = 0; i < size_s; ++i) {
      int end = size - i * e;
      int beg = std::max(int(pos), end - int(e));
      word_t t = 0;
      for (int j = beg; j < end; ++j) {
        t = t * base + char_to_word[cstr[j] & 0x7f];
      }
      smalls[i] = t;
    }

    if (size_s == 1) {
      res = BigInt(smalls[0]);
      return;
    }

    uint32 large_e = bits::ilog2(size_s - 1);
    auto larges = std::vector<BigInt>(large_e + 1);

    BigInt large_base = BigInt(base_l);
    for (uint32 i = 0; i < large_e; ++i) {
      larges[i] = large_base;
      large_base *= large_base;
    }
    larges[large_e] = large_base;

    res = _int_rec(size_s, large_e, base_l, smalls.data(), larges);
    if (neg) {
      res.change_sign();
    }
  }

  std::string _ustr(const BaseData& base, uint32 zpad=0) const {
    static const char* chars = base.lower
      ? "0123456789abcdefghijklmnopqrstuvwxyz"
      : "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";

    std::string ret;

    BigInt qs = BigInt(*this); qs.clear_sign();

    auto fd = base.fd;

    word_t r = 0;
    while (qs >= base.base_l) {
      divmod_n1(qs, base.fd21, qs, r);
      for (uint32 i = 0; i < base.e; ++i) {
        word_t s = r / fd;
        ret += chars[r - s * fd.mod];
        r = s;
      }
    }
    r = qs[0];
    while (r > 0) {
      word_t s = r / fd;
      ret += chars[r - s * fd.mod];
      r = s;
    }
    if (zpad && ret.size() < zpad) {
      ret.append(zpad - ret.size(), '0');
    }
    std::reverse(ret.begin(), ret.end());
    return ret;
  }

  static void _fast_str_rec(
      const BigInt& n, uint32 e, 
      const BaseData& base, const std::vector<BarrettReduction>& large_bases, 
      std::string& ret, bool zpad=false) {

    if (e + 1 <= 9) {
      ret += n._ustr(base, zpad ? (1 << (e + 1)) : 0);
    } else {
      BigInt q, r;
      BarrettReduction::divmod(n, large_bases[e], q, r);
      if (zpad || !q.is_zero()) {
        _fast_str_rec(q, e - 1, base, large_bases, ret, zpad);
        _fast_str_rec(r, e - 1, base, large_bases, ret, true);
      } else {
        _fast_str_rec(r, e - 1, base, large_bases, ret, zpad);
      }
    }
  }

  std::string _fast_str(const BaseData& base) const {
    std::string ret;

    if (is_neg()) {
      ret += "-";
    }

    uint32 bit_len = bit_length();
    if (bit_len <= STR_THRESHOLD) {
      ret += this->_ustr(base);
      return ret;
    }

    auto large_bases = std::vector<BarrettReduction>(50);
    BigInt base_pow = BigInt(base.base_s);

    uint32 e = 0;
    while (1) {
      large_bases[e].divisor = new BigInt(base_pow);
      if (base_pow.bit_length() * 2 - 1 > bit_len) {
        break;
      }
      e += 1;
      base_pow *= base_pow;
    }

    BigInt two = BigInt(1);
    uint32 prev_k = 0;
    for (int i = 0; i < int(e) - 2; ++i) {
      uint32 k = large_bases[i].divisor->bit_length();
      two <<= 2 * (k - prev_k);
      large_bases[i].reciprocal = new BigInt(two / *large_bases[i].divisor);
      large_bases[i].shamt = k;
      prev_k = k;
    }

    _fast_str_rec(*this, e, base, large_bases, ret);
    return ret;
  }

  // relational

  static bool _ucomp(const BigInt& a, const BigInt& b, bool case_eq) {
    if (a.size() < b.size()) {
      return true;
    } else if (a.size() > b.size()) {
      return false;
    }
    for (int i = a.size() - 1; i >= 0; --i) {
      if (a[i] != b[i]) {
        return a[i] < b[i];
      }
    }
    return case_eq;
  }

  static bool _shifted_ucomp(const BigInt& a, uint32 ofs, const BigInt& b, bool case_eq) {
    // assert(a >= b);
    for (int i = b.size() - 1; i >= 0; --i) {
      if (a[i + ofs] != b[i]) {
        return a[i + ofs] < b[i];
      }
    }
    return case_eq;
  }

  // add sub

  static void _add(const BigInt& a, const BigInt& b, bool is_sub, BigInt& res) {
    uint32 a_size = a.size();
    uint32 b_size = b.size();
    res.resize(std::max(a_size, b_size) + 1); // a.data() (and b.data()) might be changed.
    _bigint_t a_ = _bigint_t(a.sign(), a.data(), a_size);
    _bigint_t b_ = _bigint_t(b.sign(), b.data(), b_size);
    _bigint_t r_ = _bigint_t(res.data());
    _add_ar(a_, b_, is_sub, r_);
    res.set_sign(r_.sign);
    res.normalize();
  }

  static void _add_ar(const _bigint_t& a, const _bigint_t& b, bool is_sub, _bigint_t& res) {
    // when a_size < b_size and is_sub == true, b must be normalized.
    uint32 b_size = b.size;
    if (is_sub) {
      while (b_size > a.size && b.data[b_size - 1] == 0) {
        b_size -= 1;
      }
    }
    if (a.size < b_size) {
      _add_ar(b, a, is_sub, res);
      if (is_sub) {
        res.sign ^= 1;
      }
    } else {
      int res_sign = a.sign;
      res.size = a.size;
      if (a.sign ^ b.sign ^ is_sub) {
        res_sign ^= _abs_sub(a.data, a.size, b.data, b_size, res.data);
      } else {
        word_t c = _uadd_core(a.data, a.size, b.data, b_size, res.data);
        if (c) {
          res.data[res.size++] = c;
        }
      }
      res.sign = res_sign;
    }
  }

  static word_t _uadd_core(const word_t* a, uint32 a_size, const word_t* b, uint32 b_size, word_t* res) {
    // assert(a_size >= b_size);
    uint32 i = 0;
    dword_t c = 0;
    for (; i < b_size; ++i) {
      c = dword_t(a[i]) + b[i] + word_t(c);
      res[i] = word_t(c);
      c >>= W_BITS;
    }
    while (c && i < a_size) {
      c += a[i];
      res[i++] = word_t(c);
      c >>= W_BITS;
    }
    if (res != a) {
      for ( ; i < a_size; ++i) {
        res[i] = a[i];
      }
    }
    return c;
  }

  static void _usub(BigInt& a, const BigInt& b) {
    // assert(a >= b);
    _usub_core(a.data(), a.size(), b.data(), b.size(), a.data());
    a.normalize();
  }

  static void _usub_unnorm(BigInt& a, const BigInt& b) {
    _usub_core(a.data(), a.size(), b.data(), b.size(), a.data());
  }

  static void _shifted_usub_unnorm(BigInt& a, uint32 ofs, const BigInt& b) {
    _usub_core(a.data() + ofs, a.size() - ofs, b.data(), b.size(), a.data() + ofs);
  }

  static void _usub_core(const word_t* a, uint32 a_size, const word_t* b, uint32 b_size, word_t* res) {
    uint32 i = 0;
    dword_t c = 0;
    for (; i < b_size; ++i) {
      c = dword_t(a[i]) - b[i] - word_t(c);
      res[i] = word_t(c);
      c = ((c >> W_BITS) >> (W_BITS - 1));
    }
    while (c && i < a_size) {
      c = dword_t(a[i]) - word_t(c);
      res[i++] = word_t(c);
      c = ((c >> W_BITS) >> (W_BITS - 1));
    }
    if (res != a) {
      for (; i < a_size; ++i) {
        res[i] = a[i];
      }
    }
  }

  static int _abs_sub(const word_t* a, uint32 a_size, const word_t* b, uint32 b_size, word_t* res) {
    // assert(a_size >= b_size);
    for (int i = a_size - 1; i >= int(b_size); --i) {
      if (a[i]) {
        _usub_core(a, i + 1, b, b_size, res);
        return 0;
      }
      res[i] = 0;
    }
    for (int i = b_size - 1; i >= 0; --i) {
      if (a[i] != b[i]) {
        if (a[i] < b[i]) {
          _usub_core(b, i + 1, a, i + 1, res);
          return 1;
        } else {
          _usub_core(a, i + 1, b, i + 1, res);
          return 0;
        }
      }
      res[i] = 0;
    }
    return 0;
  }

  // mul

  static void _mul1(const BigInt& a, const word_t b, BigInt& res) {
    int sign = a.sign();
    _umul1(a, b, res);
    res.set_sign(sign);
  }

  static void _umul1(const BigInt& a, const word_t b, BigInt& res) {
    if (a.is_zero() || b == 0) {
      res = BigInt();
      return;
    }
    if (b == 1) {
      res = BigInt(a);
      return;
    }
    res.resize(a.size());
    word_t c = _umul1_add(a.data(), a.size(), b, res.data(), 0);
    if (c) {
      res.push_back(c);
    }
  }

  static word_t _umul1_add(const word_t* a, uint32 a_size, const word_t b, 
      word_t* res, const word_t gamma) {

    dword_t c = gamma;
    for (uint32 i = 0; i < a_size; ++i) {
      c += dword_t(a[i]) * b;
      res[i] = c;
      c >>= W_BITS;
    }
    return c;
  }

  static void _mul(const BigInt& a, const BigInt& b, BigInt &res) {
    if (&a == &b) {
      _square(a, res);
    } else {
      int sign = a.sign() ^ b.sign();
      _umul(a, b, res);
      res.set_sign(sign);
    }
  }

  static void _umul(const BigInt& a, const BigInt& b, BigInt &res) {
    uint32 a_bit_len = a.bit_length();
    uint32 b_bit_len = b.bit_length();
    if (a_bit_len < b_bit_len) {
      return _umul(b, a, res);
    }
    if (b.size() == 1) {
      return _umul1(a, b[0], res);
    }
    if (a.is_zero() || b.is_zero()) {
      res = BigInt();
      return;
    }
    if (a.is_one()) {
      res = BigInt(b);
      return;
    }
    if (b.is_one()) {
      res = BigInt(a);
      return;
    }

    uint32 a_size = a.size();
    uint32 b_size = b.size();

    if (b.size() <= MUL_TOOM22_THRESHOLD) {
      res.resize(a_size + b_size);
      _umul_basecase(a.data(), a_size, b.data(), b_size, res.data());
    } else {
      uint32 block_size = _umul_toom33_calc_block_size(a_size, b_size);
      uint32 nblock = (a_size + block_size - 1) / block_size;

      res.resize(block_size * (nblock + 1));

      word_t* work = new word_t[(block_size * 16 / 3) + 3 * 128];
      BigInt c = BigInt(b);
      if (block_size > b_size) {
        c.resize(block_size);
      }

      if (nblock > 1) {
        BigInt res_s = BigInt();
        res_s.resize(2 * block_size);

        for (uint32 i = 0; i < nblock - 1; ++i) {
          _umul_toom33(a.data() + i * block_size, c.data(), block_size, 
            res_s.data(), work);

          (void) _uadd_core(
            res.data() + i * block_size, 2 * block_size,
            res_s.data(), 2 * block_size, res.data() + i * block_size);
        }

        // ... :(
        BigInt last_a = a.subinteger((nblock - 1) * block_size * W_BITS, a.bit_length());
        last_a.resize(block_size);

        _umul_toom33(last_a.data(), c.data(), block_size, res_s.data(), work);

        (void) _uadd_core(
          res.data() + (nblock - 1) * block_size, res.size() - (nblock - 1) * block_size,
          res_s.data(), 2 * block_size, res.data() + (nblock - 1) * block_size);
      } else {
        _umul_toom33(a.data(), c.data(), block_size, res.data(), work);
      }

      delete [] work;
    }
    res.normalize();
  }

  static uint32 _umul_toom33_calc_block_size(uint32 a_size, uint32 b_size) {
    double ratio = double(a_size) / b_size; // >= 1.0
    uint32 l = std::floor(ratio);
    uint32 h = std::ceil(ratio);

    uint32 block_size_a = (a_size + l - 1) / l;
    double cost1 = l * _umul_toom33_cost(block_size_a);
    double cost2 = h * _umul_toom33_cost(b_size);

    if (cost1 < cost2) {
      return block_size_a;
    } else {
      return b_size;
    }
  }

  static double _umul_toom33_cost(uint32 block_size) {
    return std::pow(double(block_size), 1.47);
  }

  static int _umul_toom33_d1_d3(
      const word_t* a0, const word_t* a1, const word_t* a2,
      uint32 size_l, uint32 size_h, word_t* d1, word_t* d3) {

    // d1 = a2 + a1 + a1
    // d3 = a2 - a1 + a0 (sign)

    uint32 d1_size = size_l;
    word_t c = _uadd_core(a0, size_l, a2, size_h, d1);
    if (c) {
      d1[d1_size++] = c;
    }
    uint32 d3_size = d1_size;
    int sign = _abs_sub(d1, d1_size, a1, size_l, d3);

    c = _uadd_core(d1, d1_size, a1, size_l, d1);
    if (c) {
      d1[d1_size++] = c;
    }
    if (d3_size == size_l) {
      if (d1_size == size_l) {
        d1[d1_size++] = 0;
      }
      d3[d3_size++] = 0;
    }
    return sign;
  }

  static void _umul_toom33_d2(
      const word_t* a0, const word_t* a1, const word_t* a2,
      uint32 size_l, uint32 size_h, word_t* d2) {

    // d2 = 4 * a2 + 2 * a1 + a0
    uint32 i = 0;
    dword_t c = 0;
    for ( ; i < size_h; ++i) {
      c = (((dword_t(a2[i]) << 1) + a1[i]) << 1) + a0[i] + word_t(c);
      d2[i] = c;
      c >>= W_BITS;
    }
    for ( ; i < size_l; ++i) {
      c = (dword_t(a1[i]) << 1) + a0[i] + word_t(c);
      d2[i] = c;
      c >>= W_BITS;
    }
    d2[i++] = c;
  }

  static void _umul_toom33(
      const word_t* a, const word_t* b, uint32 size, word_t* res, word_t*& work) {

    while (size > 1 && (a[size - 1] | b[size - 1]) == 0) {
      size -= 1;
      res[size * 2] = res[size * 2 + 1] = 0;
    }

    if (size < MUL_TOOM33_THRESHOLD) {
      return _umul_toom22(a, b, size, res, work);
    }

    const uint32 size_l = (size + 2) / 3;
    const uint32 size_h = size - size_l * 2;

    const uint32 work_size = 8 * (size_l + 1);

    auto* a0 = a;
    auto* a1 = a0 + size_l;
    auto* a2 = a1 + size_l;
    auto* b0 = b;
    auto* b1 = b0 + size_l;
    auto* b2 = b1 + size_l;

    auto* ad1 = work;
    auto* bd1 = ad1 + (size_l + 1);
    auto* ad3 = bd1 + (size_l + 1);
    auto* bd3 = ad3 + (size_l + 1);
    auto* ad2 = ad1;
    auto* bd2 = bd1;

    auto* s0 = res;
    auto* s1 = work + 6 * (size_l + 1);
    auto* s3 = work + 4 * (size_l + 1);
    auto* s2 = work + 2 * (size_l + 1);
    auto* s4 = res + 4 * size_l;

    work += work_size;

    int sign_ad3 = _umul_toom33_d1_d3(a0, a1, a2, size_l, size_h, ad1, ad3);
    int sign_bd3 = _umul_toom33_d1_d3(b0, b1, b2, size_l, size_h, bd1, bd3);

    _umul_toom33(ad1, bd1, size_l + 1, s1, work);
    _umul_toom33(ad3, bd3, size_l + 1, s3, work);

    _umul_toom33_d2(a0, a1, a2, size_l, size_h, ad2);
    _umul_toom33_d2(b0, b1, b2, size_l, size_h, bd2);

    _umul_toom33(ad2, bd2, size_l + 1, s2, work);
    _umul_toom33(a0, b0, size_l, s0, work);
    _umul_toom33(a2, b2, size_h, s4, work);

    auto s0_ = _bigint_t(0, s0, 2 * size_l);
    auto s1_ = _bigint_t(0, s1, 2 * (size_l + 1));
    auto s2_ = _bigint_t(0, s2, 2 * (size_l + 1));
    auto s3_ = _bigint_t(sign_ad3 ^ sign_bd3, s3, 2 * (size_l + 1));
    auto s4_ = _bigint_t(0, s4, 2 * size_h);

    auto r_ = _bigint_t(0, res + size_l, size * 2 - size_l);

    _add_ar(s2_, s3_, 1, s2_);
    _exact_div(s2, s2_.size, 3);
    _add_ar(s1_, s3_, 1, s3_);
    _rshift(s3, s3_.size, 1, s3, s3_.size);
    _add_ar(s1_, s0_, 1, s1_);
    _add_ar(s2_, s1_, 1, s2_);
    _rshift(s2, s2_.size, 1, s2, s2_.size);
    _add_ar(s1_, s3_, 1, s1_);
    _add_ar(s1_, s4_, 1, s1_);
    _add_ar(s2_, s4_, 1, s2_);
    _add_ar(s2_, s4_, 1, s2_);
    _add_ar(s3_, s2_, 1, s3_);

    std::fill(res + size_l * 2, res + size_l * 4, 0);

    s2_.size = std::min(s2_.size, r_.size - size_l * 2);

    _add_ar(r_, s3_, 0, r_); r_.data += size_l; r_.size -= size_l;
    _add_ar(r_, s1_, 0, r_); r_.data += size_l; r_.size -= size_l;
    _add_ar(r_, s2_, 0, r_);
    
    work -= work_size;
  }

  static void _umul_toom22(
      const word_t* a, const word_t* b, uint32 size, word_t* res, word_t*& work) {

    if (size <= MUL_TOOM22_THRESHOLD) {
      return _umul_basecase(a, size, b, size, res);
    }

    const uint32 size_l = (size + 1) >> 1;
    const uint32 size_h = size - size_l;

    const uint32 work_size = size_l * 2 + 1;

    word_t* d1 = res;
    word_t* d2 = res + size_l;
    word_t* c2 = work;
    work += work_size;

    int sign1 = _abs_sub(a, size_l, a + size_l, size_h, d1);
    int sign2 = _abs_sub(b, size_l, b + size_l, size_h, d2);

    _umul_toom22(d1, d2, size_l, c2, work);

    _umul_toom22(a, b, size_l, res, work); // c0
    _umul_toom22(a + size_l, b + size_l, size_h, res + size_l * 2, work); // c1

    uint32 c2_size = size_l * 2;

    _bigint_t c2_ = _bigint_t(sign1 ^ sign2 ^ 1, c2, c2_size);
    _bigint_t c1_ = _bigint_t(0, res + size_l * 2, size_h * 2);
    _bigint_t c0_ = _bigint_t(0, res, size_l * 2);
    _bigint_t r_  = _bigint_t(0, res + size_l , size_l + size_h * 2);

    _add_ar(c2_, c0_, 0, c2_);
    _add_ar(c2_, c1_, 0, c2_);
    _add_ar(r_, c2_, 0, r_);

    work -= work_size;
  }

  static void _umul_basecase(
      const word_t* a, uint32 a_size, const word_t* b, uint32 b_size, word_t* res) {
    
    std::fill(res, res + a_size + b_size, 0);
    for (uint32 i = 0; i < b_size; ++i) {
      if (b[i] == 0) {
        continue;
      }
      dword_t c = 0;
      word_t beta = b[i];
      for (uint32 j = 0; j < a_size; ++j) {
        c = dword_t(beta) * a[j] + res[i + j] + word_t(c);
        res[i + j] = c;
        c >>= W_BITS;
      }
      if (c) {
        res[i + a_size] = c;
      }
    }
  }

  // square

  static void _square(const BigInt& a, BigInt& res) {
    if (a.is_zero()) {
      res = BigInt();
      return;
    }
    if (a.is_one()) {
      res = BigInt(1);
      return;
    }
    uint32 a_size = a.size();
    res.resize(a_size * 2);
    if (a_size <= SQ_TOOM22_THRESHOLD) {
      _square_basecase(a.data(), a_size, res.data());
    } else if (a_size <= SQ_TOOM33_THRESHOLD) {
      word_t* work = new word_t[a_size * 2 + 3 * 32];
      _square_toom22(a.data(), a_size, res.data(), work);
      delete [] work;
    } else {
      word_t* work = new word_t[a_size * 4 + 6 * 96];
      _square_toom33(a.data(), a_size, res.data(), work);
      delete [] work;
    }
    res.normalize();
    return;
  }

  static void _square_toom33(
      const word_t* a, uint32 size, word_t* res, word_t*& work) {

    while (size > 1 && a[size - 1] == 0) {
      size -= 1;
      res[size * 2] = res[size * 2 + 1] = 0;
    }

    if (size <= SQ_TOOM33_THRESHOLD) {
      return _square_toom22(a, size, res, work);
    }

    const uint32 size_l = (size + 2) / 3;
    const uint32 size_h = size - size_l * 2;
    const uint32 work_size = 6 * (size_l + 1);

    auto* a0 = a;
    auto* a1 = a0 + size_l;
    auto* a2 = a1 + size_l;

    auto* d1 = work;
    auto* d2 = d1 + size_l + 1;

    auto* s0 = res;
    auto* s1 = d1 + (size_l + 1) * 2;
    auto* s2 = s1 + (size_l + 1) * 2;
    auto* s3 = d1;
    auto* s4 = res + size_l * 4;

    work += work_size;

    // d1 = a2 + a1 + a0
    // d2 = a2 - a1 + a0
    (void) _umul_toom33_d1_d3(a0, a1, a2, size_l, size_h, d1, d2);

    std::copy(a2, a2 + size_h, res);
    std::fill(res + size_h, res + size_l, 0);
    auto* a2_ = res;

    _square_toom33(d2, size_l + 1, s2, work);           // s2 = d2 ** 2        [w4, w6)
    _square_toom33(d1, size_l + 1, s1, work);           // s1 = d1 ** 2        [w2, w4)
    _umul_toom33(a1, a2_, size_l, s3, work);            // s3 = 2 * a1 * a2    [w0, w2)
    _lshift(s3, size_l * 2, 1, s3, size_l * 2 + 1);               
    _square_toom33(a0, size_l, s0, work);               // s0 = a0 ** 2        [r0, r2)
    _square_toom33(a2, size_h, s4, work);               // s4 = a2 ** 2        [r4, r6)
    
    auto s0_ = _bigint_t(0, s0, 2 * size_l);
    auto s1_ = _bigint_t(0, s1, 2 * (size_l + 1));
    auto s2_ = _bigint_t(0, s2, 2 * (size_l + 1));
    auto s3_ = _bigint_t(0, s3, 2 * size_l + 1);
    auto s4_ = _bigint_t(0, s4, 2 * size_h);
    auto r_ = _bigint_t(0, res + size_l, size * 2 - size_l);

    _add_ar(s2_, s1_, 0, s2_); 
    _rshift(s2, s2_.size, 1, s2, s2_.size);

    _add_ar(s1_, s2_, 1, s1_);
    _add_ar(s1_, s3_, 1, s1_);

    _add_ar(s2_, s4_, 1, s2_);
    _add_ar(s2_, s0_, 1, s2_);

    std::fill(res + size_l * 2, res + size_l * 4, 0);
    s3_.size = std::min(s3_.size, r_.size - size_l * 2);

    _add_ar(r_, s1_, 0, r_); r_.data += size_l; r_.size -= size_l;
    _add_ar(r_, s2_, 0, r_); r_.data += size_l; r_.size -= size_l;
    _add_ar(r_, s3_, 0, r_);

    work -= work_size;
  }

  static void _square_toom22(
      const word_t* a, uint32 size, word_t* res, word_t*& work) {

    if (size <= SQ_TOOM22_THRESHOLD) {
      return _square_basecase(a, size, res);
    }

    const uint32 size_l = (size + 1) >> 1;
    const uint32 size_h = size - size_l;
    const uint32 work_size = size_l * 2 + 1;

    word_t* d = res;
    word_t* c2 = work;
    work += work_size;

    (void) _abs_sub(a, size_l, a + size_l, size_h, d);
    _square_toom22(d, size_l, c2, work);
    _square_toom22(a, size_l, res, work); // c0
    _square_toom22(a + size_l, size_h, res + size_l * 2, work); // c1

    uint32 c2_size = size_l * 2;

    _bigint_t c2_ = _bigint_t(1, c2, c2_size);
    _bigint_t c1_ = _bigint_t(0, res + size_l * 2, size_h * 2);
    _bigint_t c0_ = _bigint_t(0, res, size_l * 2);
    _bigint_t r_  = _bigint_t(0, res + size_l, size_l + size_h * 2);

    _add_ar(c2_, c0_, 0, c2_);
    _add_ar(c2_, c1_, 0, c2_);
    _add_ar(r_, c2_, 0, r_);

    work -= work_size;
  }

  static void _square_basecase(
      const word_t* a, uint32 a_size, word_t* res) {

    std::fill(res, res + 2 * a_size, word_t(0));
    for (uint32 i = 0; i < a_size; ++i) {
      word_t alpha = a[i];
      if (alpha == 0) {
        continue;
      }
      dword_t c = 0;
      for (uint32 j = i + 1; j < a_size; ++j) {
        dword_t s = dword_t(alpha) * a[j] + res[i + j] + word_t(c);
        res[i + j] = s;
        c = s >> W_BITS;
      }
      if (c) {
        res[i + a_size] = c;
      }
    }

    word_t c = 0;
    for (uint32 i = 0; i < a_size; ++i) {
      dword_t a2 = dword_t(a[i]) * a[i] + c;
      dword_t t = (dword_t(res[2 * i]) << 1) + word_t(a2);
      res[2 * i] = t;
      t = (dword_t(res[2 * i + 1]) << 1) + word_t(t >> W_BITS) + word_t(a2 >> W_BITS);
      res[2 * i + 1] = t;
      c = t >> W_BITS;
    }
  }
  
  // div-mod
  static void _udivmod(const BigInt& a, const BigInt& b, BigInt& qs, BigInt& rs) {
    // Modern computer arithmetic
    if (_ucomp(a, b, false)) { // fixed
      qs = BigInt();
      rs = BigInt(a);
      return;
    }
    if (b.is_zero()) {
      assert(0);
    }
    if (b.is_one()) {
      qs = BigInt(a);
      rs = BigInt();
      return;
    }

    uint32 b_bit_len = b.bit_length();
    uint32 shamt = (W_BITS - b_bit_len) & (W_BITS - 1);
    
    BigInt numer = a << shamt;
    BigInt denom = b << shamt;

    uint32 n_size = numer.size();
    uint32 d_size = denom.size();
    uint32 ofs = n_size - d_size;

    if (!_shifted_ucomp(numer, ofs, denom, false)) {
      qs.resize(ofs + 1);
      qs[ofs] = 1;
      _shifted_usub_unnorm(numer, ofs, denom);
    } else {
      qs.resize(ofs);
    }

    word_t d = denom[d_size - 1];
    auto fd = FastDiv21(d);

    BigInt tmp = BigInt(d_size + 1, 0);
    for (int i = ofs - 1; i >= 0; --i) {
      word_t q;
      if (numer[i + d_size] >= d) {
        q = ~word_t(0);
      } else {
        q = ((dword_t(numer[i + d_size]) << W_BITS) | numer[i + d_size - 1]) / fd;
      }
      if (q > 0) {
        tmp[d_size] = _umul1_add(denom.data(), denom.size(), q, tmp.data(), 0);
        while (_shifted_ucomp(numer, i, tmp, false)) {
          _usub_unnorm(tmp, denom);
          q -= 1;
        }
        _shifted_usub_unnorm(numer, i, tmp);
      }
      qs[i] = q;
      numer.resize(numer.size() - 1);
    }
    numer.normalize();
    rs = BigInt(numer);
    if (shamt) {
      rs >>= shamt;
    }
  }

  static void _fast_div32(
      const BigInt& a21, const BigInt& a0,
      const BigInt& b10, const BigInt& b1, const BigInt& b0, uint32 n,
      BigInt& q, BigInt& r) {

    BigInt a2 = a21 >> n;
    if (_ucomp(a2, b1, false)) { // fixed
      _fast_div21(a21, b1, n, q, r);
    } else {
      q = mask(n);
      r = a21; r += b1; r -= b1 << n;
    }
    r <<= n; r |= a0; r -= b0 * q; // bottleneck
    while (r < 0) {
      q -= 1;
      r += b10;
    }
  }

  static void _fast_div21(const BigInt& a, const BigInt& b, uint32 n, BigInt& q, BigInt& r) {
    if (_ucomp(a, b, false)) {
      q = BigInt();
      r = BigInt(a);
      return;
    }
    if (n <= DIVMOD_THRESHOLD) {
      return _udivmod(a, b, q, r);
    }
    uint32 ofs = n & 1;
    uint32 nh = (n + ofs) >> 1;

    BigInt b10 = BigInt(b);
    BigInt b1 = b >> (nh - ofs);
    BigInt b0 = b.subinteger(0, nh - ofs);
    BigInt a32 = a >> n;
    BigInt a1 = a.subinteger(nh - ofs, n);
    BigInt a0 = a.subinteger(0, nh - ofs);

    if (ofs) {
      b0 <<= 1;
      a0 <<= 1;
      b10 <<= 1;
    }

    BigInt tmp_r;
    BigInt q0;

    _fast_div32(a32,   a1, b10, b1, b0, nh, q, tmp_r); // fixed
    _fast_div32(tmp_r, a0, b10, b1, b0, nh, q0, r);

    q <<= nh;
    q |= q0;

    if (ofs) {
      r >>= 1;
    }
  }

  static void _fast_udivmod(const BigInt& a, const BigInt& b, BigInt& q, BigInt& r) {
    if (_ucomp(a, b, false)) {
      q = BigInt();
      r = BigInt(a);
      return;
    }
    uint32 m = a.bit_length();
    uint32 n = b.bit_length();

    if (n <= DIVMOD_THRESHOLD) {
      return _udivmod(a, b, q, r);
    }

    uint32 q_bit_len = m - n + 1;
    uint32 nblock = 1 + m / n;

    q.set_zero(); // fixed
    q.resize(bits_to_words(q_bit_len));

    BigInt tmp_q, tmp_r;
    r = a.subinteger((nblock - 1) * n, nblock * n);
    for (int i = nblock - 2; i >= 0; --i) {
      r <<= n;
      r |= a.subinteger(i * n, (i + 1) * n);
      _fast_div21(r, b, n, tmp_q, tmp_r); // fixed
      _lshifted_lor(q, tmp_q, i * n);
      r = tmp_r;
    }
    q.normalize();
  }

  static void _exact_div(word_t* a, uint32 size, word_t d) {
    assert(d & 1);
    word_t inv = bits::mul_inv(d);
    word_t c = 0;
    for (uint32 i = 0; i < size; ++i) {
      a[i] = inv * (a[i] - c);
      c = (dword_t(a[i]) * d) >> W_BITS;
    }
  }

  // logical
  static void _land(word_t* a, const word_t* b, uint32 b_size) {
    // assert(a_size == b_size);
    for (uint32 i = 0; i < b_size; ++i) {
      a[i] &= b[i];
    }
  }

  static void _lxor(word_t* a, const word_t* b, uint32 b_size) {
    // assert(a_size >= b.size);
    for (uint32 i = 0; i < b_size; ++i) {
      a[i] ^= b[i];
    }
  }

  static void _lor(word_t* a, const word_t* b, uint32 b_size) {
    // assert(a_size >= b_size);
    for (uint32 i = 0; i < b_size; ++i) {
      a[i] |= b[i];
    }
  }

  static void _lshifted_lor(BigInt& lhs, const BigInt& rhs, const uint32 shamt) {
    uint32 q = shamt / W_BITS;
    uint32 r = shamt % W_BITS;
    BigInt shifted_rhs = rhs << r;
    _lor(lhs.data() + q, shifted_rhs.data(), shifted_rhs.size());
  }

  static void _lshift(const word_t* n, const uint32 size, 
      uint32 shamt, word_t* res, const uint32 res_size) {

    uint32 q = shamt / W_BITS;
    uint32 r = shamt % W_BITS;

    if (r) {
      word_t c = n[size - 1];
      if (res_size > size + q) {
        res[res_size - 1] = c >> (W_BITS - r);
      }
      c <<= r;
      for (int i = size - 1; i >= 1; --i) {
        word_t t = n[i - 1];
        res[i + q] = c | (t >> (W_BITS - r));
        c = t << r;
      }
      res[q] = c;
    } else {
      for (int i = size - 1; i >= 0; --i) {
        res[i + q] = n[i];
      }
    }
    for (uint32 i = 0; i < q; ++i) {
      res[i] = 0;
    }
  }

  static void _rshift(const word_t* n, const uint32 size, 
      uint32 shamt, word_t* res, const uint32 res_size) {

    uint32 q = shamt / W_BITS;
    uint32 r = shamt % W_BITS;

    if (r) {
      word_t c = n[q] >> r;
      for (uint32 i = 0; i < res_size - 1; ++i) {
        word_t t = n[i + q + 1];
        res[i] = c | (t << (W_BITS - r));
        c = t >> r;
      }
      if (res_size + q < size) {
        c |= n[size - 1] << (W_BITS - r);
      }
      res[res_size - 1] = c;
    } else {
      for (uint32 i = 0; i < size - q; ++i) {
        res[i] = n[i + q];
      }
    }
  }

  // functions

  static void _fib(uint32 n, BigInt& a, BigInt& b) {
    if (n <= 2) {
      a = BigInt((n + 1) >> 1);
      b = BigInt((n + 2) >> 1);
      return;
    }

    _fib((n >> 1) - 1, a, b);
    
    a *= a;
    b *= b;

    BigInt c =  b       + a;
    BigInt d = (b << 2) - a + ((n >> 1) & 1 ? -2 : 2);

    if (n & 1) {
      a = d;
      b = (d << 1) - c;
    } else {
      a = d - c;
      b = d;
    }
  }

  static void _isqrt(const BigInt& a, BigInt& s, BigInt& r) {
    if (a < (uint64(1) << 52)) {
      s = BigInt(word_t(std::sqrt(uint64(a))));
      r = a - s * s;
      return;
    }

    uint32 n = a.bit_length();
    uint32 ofs = (n - 1) & 2;

    if (ofs > 0) {
      n += 2;
    }

    uint32 nq = (n + 1) >> 2;
    uint32 nh = nq << 1;
    BigInt ah = a >> (nh - ofs);
    BigInt al = a.subinteger(0, nh - ofs);
    BigInt a1 = al >> (nq - ofs);
    BigInt a0 = al.subinteger(0, nq - ofs);

    if (ofs > 0) {
      a0 <<= ofs;
    }

    BigInt s1, r1;
    _isqrt(ah, s1, r1);

    BigInt q, u;
    divmod((r1 << nq) + a1, s1 << 1, q, u);

    s = (s1 << nq) + q;
    r = (u << nq) + a0 - q * q;
    if (r < 0) {
      r += (s << 1);
      r -= 1;
      s -= 1;
    }

    if (ofs > 0) {
      r >>= 2;
      if (s & 1) {
        s >>= 1;
        r += s;
        r += 1;
      } else {
        s >>= 1;
      }
    }
  }

  int sign_;
  container_t n_;
};

int main() {
  using namespace std;

  uint32 n;
  while (~scanf("%u", &n)) {
    if (n == 2) {
      cout << "3\nINF" << endl;
    } else {
      BigInt ans;
      if (n & 1) {
        ans = BigInt::fib(n);
      } else {
        BigInt a, b;
        BigInt::fib(n / 2 - 1, a, b);
        ans = a * b;
        ans <<= 1;
      }
      cout << n << endl;
      cout << ans << endl;
    }
  }
  return 0;
}
0