結果

問題 No.1555 Constructed Balancing Sequence
ユーザー chineristAC
提出日時 2021-01-04 03:13:35
言語 PyPy3
(7.3.15)
結果
MLE  
(最新)
AC  
(最初)
実行時間 -
コード長 4,683 bytes
コンパイル時間 213 ms
コンパイル使用メモリ 82,140 KB
実行使用メモリ 766,920 KB
最終ジャッジ日時 2024-06-22 19:26:41
合計ジャッジ時間 4,781 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1 MLE * 1
other -- * 42
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

def solve(N,K,A):
diff = [A[0] for i in range(N)]
S = A[0]
for i in range(1,N):
diff[i] = S - A[i]
if diff[i] < 0:
return 0
S += A[i]
diff.append(0)
dp = [{} for i in range(N-1)]
stack = [(N-2,dp_S) for dp_S in range(10*K+10)]
while stack:
i,j = stack.pop()
if j in dp[i]:
continue
dp[i][j] = [0 for k in range(6*K+2)]
if not i:
continue
if diff[i]:
stack.append((i-1,(j+diff[i+1]-2*K-1+diff[i])//2-diff[i]+2*K+1))
if diff[i]<=1:
for k in range(-2,1):
stack.append((i-1,(j+diff[i+1]-2*K-1+k)//2+2*K+1))
stack.append((i-1,(j+diff[i+1]-2*K-1-diff[i])//2+2*K+1))
cum = [{sum:[0 for minus in range(6*K+2)] for sum in dp[i]} for i in range(N-1)]
mod = 998244353
for minus in range(6*K+2):
for sum in dp[0]:
dp_S = sum - minus
real_S = diff[1] + dp_S - 2*K - 1
first = diff[0] - minus
if first==real_S and -K<=first<=K:
dp[0][sum][minus] = 1
for sum in dp[0]:
cum[0][sum][0] = dp[0][sum][0]
for minus in range(1,6*K+2):
cum[0][sum][minus] = dp[0][sum][minus] + cum[0][sum][minus-1]
cum[0][sum][minus] %= mod
for i in range(1,N-1):
for minus in range(6*K+2):
for sum in dp[i]:
dp_S = sum - minus
real_S = dp_S + diff[i+1] - 2*K - 1
if diff[i]:
L = max((real_S+minus+diff[i]+1)//2,-K+minus+diff[i])
R = min((real_S+minus+diff[i])//2,K+minus+diff[i])
if L==R:
pre_dp_S = L - diff[i] + 2*K + 1
dp[i][sum][minus] += dp[i-1][pre_dp_S][0]
dp[i][sum][minus] %= mod
if minus%2==diff[i] and real_S%2==0 and -K<=real_S//2<=K:
pre_minus_L = max(0,minus//2+1+diff[i])
pre_minus_R = min(6*K+1,minus//2+3*K+diff[i])
if pre_minus_L<=pre_minus_R:
pre_sum = real_S//2+minus//2+2*K+1
dp[i][sum][minus] += cum[i-1][pre_sum][pre_minus_R] - cum[i-1][pre_sum][pre_minus_L] + dp[i-1][pre_sum][pre_minus_L]
dp[i][sum][minus] %= mod
if diff[i]<=1 and (real_S+minus-diff[i])%2==0:
m = max(0,-K+minus-diff[i]-(real_S+minus-diff[i])//2)
M = min((minus-diff[i])//2,K+minus-diff[i]-(real_S+minus-diff[i])//2)
pre_minus_L = max(0,m+diff[i])
pre_minus_R = min(6*K+1,M+diff[i])
if pre_minus_R>=pre_minus_L:
pre_sum = (real_S+minus-diff[i])//2+2*K+1
dp[i][sum][minus] += cum[i-1][pre_sum][pre_minus_R] - cum[i-1][pre_sum][pre_minus_L] + dp[i-1][pre_sum][pre_minus_L]
dp[i][sum][minus] %= mod
for sum in cum[i]:
cum[i][sum][0] = dp[i][sum][0]
for minus in range(1,6*K+2):
cum[i][sum][minus] = cum[i][sum][minus-1] + dp[i][sum][minus]
cum[i][sum][minus] %= mod
res = 0
for real_S in range(-N*K,N*K+1):
minus = 0
i = N - 1
if diff[i]:
L = max((real_S+minus+diff[i]+1)//2,-K+minus+diff[i])
R = min((real_S+minus+diff[i])//2,K+minus+diff[i])
if L==R:
pre_dp_S = L - diff[i] + 2*K + 1
res += dp[i-1][pre_dp_S][0]
res %= mod
if minus%2==diff[i] and real_S%2==0 and -K<=real_S//2<=K:
pre_minus_L = max(0,minus//2+1+diff[i])
pre_minus_R = min(6*K+1,minus//2+3*K+diff[i])
if pre_minus_L<=pre_minus_R:
pre_sum = real_S//2+minus//2+2*K+1
res += cum[i-1][pre_sum][pre_minus_R] - cum[i-1][pre_sum][pre_minus_L] + dp[i-1][pre_sum][pre_minus_L]
res %= mod
if diff[i]<=1 and (real_S+minus-diff[i])%2==0:
m = max(0,-K+minus-diff[i]-(real_S+minus-diff[i])//2)
M = min((minus-diff[i])//2,K+minus-diff[i]-(real_S+minus-diff[i])//2)
pre_minus_L = max(0,m+diff[i])
pre_minus_R = min(6*K+1,M+diff[i])
if pre_minus_R>=pre_minus_L:
pre_sum = (real_S+minus-diff[i])//2+2*K+1
res += cum[i-1][pre_sum][pre_minus_R] - cum[i-1][pre_sum][pre_minus_L] + dp[i-1][pre_sum][pre_minus_L]
res %= mod
return res
N,K = map(int,input().split())
A = list(map(int,input().split()))
print(solve(N,K,A))
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0