結果

問題 No.544 Delete 7
ユーザー UMRgurashiUMRgurashi
提出日時 2021-01-04 20:20:40
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 1,000 ms
コード長 11,975 bytes
コンパイル時間 1,269 ms
コンパイル使用メモリ 113,464 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-15 05:33:36
合計ジャッジ時間 3,358 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 48
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'char z(char, char)':
main.cpp:446:1: warning: control reaches end of non-void function [-Wreturn-type]
  446 | }
      | ^

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<algorithm>
#include<string>
#include<cmath>
#include<vector>
#include<map>
#include<cstdio>
#include<iomanip>
#include<set>
#include<numeric>
#include<queue>
#include<deque>
#include<utility>
#include<stack>
#include <random>
constexpr int MOD = 1000000007;
//constexpr int MOD = 998244353;
#pragma region Macros
using namespace std;
#define int long long
#define double long double
constexpr double PI = 3.14159265358979323846;
const int INF = 1e12;
const int dx[8] = { 1, 0, -1, 0, 1, -1, -1, 1 };
const int dy[8] = { 0, 1, 0, -1, 1, 1, -1, -1 };
const int days[13] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
#define rep(i,n) for(int i=0;i<n;i++)
#define REP(i,n) for(int i=1;i<=n;i++)
#define krep(i,k,n) for(int i=(k);i<n+k;i++)
#define Krep(i,k,n) for(int i=(k);i<n;i++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define Rrep(i,n) for(int i=n;i>0;i--)
#define LAST(x) x[x.size()-1]
#define ALL(x) (x).begin(),(x).end()
#define MAX(x) *max_element(ALL(x))
#define MIN(x) *min_element(ALL(x)
#define RUD(a,b) ((a+b-1)/b)
#define sum1_n(n) ((n)*(n+1)/2)
#define SUM1n2(n) (n*(2*n+1)*(n+1))/6
#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))
#define PB push_back
#define Fi first
#define Se second
int intpow(int a, int n) {
// a^nint ver
int ans = a;
if (n == 0)
return 1;
else {
rep(i, n - 1)
ans *= a;
return ans;
}
}
int factorial(int a) {
if (a == 0)
return 1;
else
return a * factorial(a - 1);
}
int nPr(int n, int r) {
int s = n - r + 1;
int sum = 1;
for (int i = s; i <= n; i++)
sum *= i;
return sum;
}
int GCD(int a, int b)
{
if (a < b)
swap(a, b);
if (b == 0)
return a;
if (a % b == 0)
return b;
return GCD(b, a % b);
}
int LCM(int a, int b)
{
return a * b / GCD(a, b);
}
int divisor_count(int n) {
//
int ans = 0;
REP(i, sqrt(n)) {
if (n % i == 0)
ans += 2;
if (n == i * i)
ans--;
}
return ans;
}
int divisor_sum(int n) {
//
int ans = 0;
REP(i, sqrt(n)) {
if (n % i == 0)
ans += i + n / i;
if (n == i * i)
ans -= n / i;
}
return ans;
}
int CEIL1(int n) {
//1
return (n + 9) / 10 * 10;
}
int getdigit(int n) {
return log10(n) + 1;
}
/*
int digit(int n, int k) {
//nk
rep(i, k - 1)
n /= 10;
return n % 10;
}
*/
int digit_sum(int n) {
int sum = 0, dig;
while (n) {
dig = n % 10;
sum += dig;
n /= 10;
}
return sum;
}
int DIVTIME(int n, int k) {
//nk
int div = 0;
while (n % k == 0) {
div++;
n /= k;
}
return div;
}
#pragma region base
/*
int n_decimal(int k, int n) {
int ans = 0;
for (int i = 0; k > 0; i++) {
ans += k % n * intpow(10, i);
k /= n;
}
return ans;
}
*/
int binary_2to10(string n) {
int ans = 0;
rep(i, n.size()) {
if (n[i] == '1')
ans += intpow(2, n.size() - i - 1);
}
return ans;
}
string base_k(int n,int k) {
//n(10)k(string)
string ans = "";
while (n) {
ans += to_string(n % k);
n /= k;
}
reverse(ALL(ans));
return ans;
}
#pragma endregion
int intabs(int n) {
if (n < 0)
return -1 * n;
else
return n;
}
/*
int Kaibun(int n) {
int ans = 0;
int d = getdigit(n);
REP(i, d)
ans += digit(n, i) * pow(10, d - i);
return ans;
}
*/
inline bool is_uru(int y) {
if (y % 400 == 0)
return 1;
if (y % 100 == 0)
return 0;
if (y % 4 == 0)
return 1;
return 0;
}
void next_date(int& y, int& m, int& d) {
int day = days[m];
if (m == 2 && is_uru(y))
day++;
d++;
if (day < d) {
m++;
d = 1;
}
if (m == 13) {
y++;
m = 1;
}
}
double LOG(int a, int b) {
return log(b) / log(a);
}
double DISTANCE(int x1, int y1, int x2, int y2) {
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
double clock_angle(int h, int m) {
h %= 12;
double mm = 6.0 * m;
double nn = 30.0 * h + 0.5 * m;
return std::min(fabs(mm - nn), 360.0 - fabs(nn - mm));
}
double heron(double a, double b, double c) {
double s = (a + b + c) / 2.0;
return sqrt(s * (s - a) * (s - b) * (s - c));
}
inline bool BETWEEN(int x, int min, int max) {
if (min <= x && x <= max)
return true;
else
return false;
}
inline bool between(int x, int min, int max) {
if (min < x && x < max)
return true;
else
return false;
}
inline bool is_prime(int x) {
if (x == 1)
return false;
if (x == 2)
return true;
if (x % 2 == 0)
return false;
double sqrtx = sqrt(x);
for (int i = 3; i <= sqrtx; i += 2) {
if (x % i == 0)
return false;
}
return true;
}
inline bool is_sqrt(int n) {
if (sqrt(n) == (int)sqrt(n))
return true;
else
return false;
}
template<class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
#define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl
#pragma endregion
typedef vector<int> vint;
typedef vector<vint> vvint;
typedef vector<vvint> vvvint;
typedef vector<string> vstring;
typedef vector<bool> vbool;
typedef vector<vbool> vvbool;
typedef map<int, int> mapint;
typedef pair<int, int> pint;
typedef vector<pint> vpint;
using Graph = vector<vint>;
#pragma region MOD
template<int MOD> struct Fp {
long long val;
constexpr Fp(long long v = 0) noexcept : val(v% MOD) {
if (val < 0) val += MOD;
}
constexpr int getmod() const { return MOD; }
constexpr Fp operator - () const noexcept {
return val ? MOD - val : 0;
}
constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp& r) noexcept {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp& r) noexcept {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp& r) noexcept {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp& r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr bool operator == (const Fp& r) const noexcept {
return this->val == r.val;
}
constexpr bool operator != (const Fp& r) const noexcept {
return this->val != r.val;
}
friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {
is >> x.val;
x.val %= MOD;
if (x.val < 0) x.val += MOD;
return is;
}
friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {
return os << x.val;
}
friend constexpr Fp<MOD> modpow(const Fp<MOD>& r, long long n) noexcept {
if (n == 0) return 1;
if (n < 0) return modpow(modinv(r), -n);
auto t = modpow(r, n / 2);
t = t * t;
if (n & 1) t = t * r;
return t;
}
friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
return Fp<MOD>(u);
}
};
using mint = Fp<MOD>;
#pragma endregion
#pragma region nCr
const int MAXR = 10000000;
int fac[MAXR], finv[MAXR], inv[MAXR];
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAXR; i++) {
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
int nCr(int n, int k) {
if (n < k)
return 0;
if (n < 0 || k < 0)
return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
mint nCrm(long long N, long long K) {
mint res = 1;
for (long long n = 0; n < K; ++n) {
res *= (N - n);
res /= (n + 1);
}
return res;
}
int nCr2(int n, int r) {
//MOD
int ans = 1;
REP(i, r) {
ans *= n--;
ans /= i;
}
return ans;
}
#pragma endregion
vector<pint> prime_factorize(int N) {
vector<pint> res;
for(int i=2;i*i<=N;i++){
if (N % i != 0)
continue;
int ex = 0;
while (N % i == 0) {
++ex;
N /= i;
}
res.push_back({ i, ex });
}
if (N != 1)
res.push_back({ N, 1 });
return res;
}
double median(vint a) {
int N = a.size();
if (N % 2 == 1)
return (double)a[N / 2];
else
return (double)(a[N / 2 - 1] + a[N / 2]) / 2;
}
char z(char a, char b) {
if (a > b)
swap(a, b);
if (a == b)
return a;
if (a == 'R' && b == 'S')
return 'R';
if (a == 'P' && b == 'R')
return 'P';
if (a == 'P' && b == 'S')
return 'S';
}
int sum_xor(int x) {
if (x % 4 == 1)
return 1;
if (x % 4 == 3)
return 0;
return (x + 1) ^ sum_xor(x + 1);
}
struct UnionFind {
//-1
//id
vint r;
UnionFind(int N) {
r = vint(N, -1);
}
int root(int x) {
if (r[x] < 0)
return x;
return r[x] = root(r[x]);
}
bool is_same(int x, int y) {
return root(x) == root(y);
}
bool unite(int x, int y) {
x = root(x);
y = root(y);
if (x == y)
return false;
if (r[x] > r[y])
swap(x, y);
r[x] += r[y];
r[y] = x;
return true;
}
int size(int x) {
return -r[root(x)];
}
};
#pragma region Segment Tree
#define len (1<<22)
int seg[len * 2];
void add(int ind, int v) {
ind += len;
seg[ind] += v;
while (ind/2!=0) {
ind /= 2;
seg[ind] = seg[ind * 2]+seg[ind * 2 + 1];
}
}
int sum(int l, int r) {
l += len, r += len;
int ans = 0;
while (l<r) {
if (l % 2) {
ans += seg[l];
l++;
}
l /= 2;
if (r % 2) {
ans += seg[r - 1];
r--;
}
r /= 2;
}
return ans;
}
#pragma endregion
signed main() {
int N;
cin >>N;
random_device rnd;
mt19937 mt(rnd());
uniform_int_distribution<> randN(1, N-1);
while (1) {
a:
string x = to_string(randN(mt));
string y = to_string(N - stoi(x));
rep(i, x.size()) {
if (x[i] == '7')
goto a;
}
rep(i, y.size()) {
if (y[i] == '7')
goto a;
}
cout << x << " " << y << endl;
return 0;
}
}
//2
/*
bool solve() {
}
int l=
int r=
int mid;
while(abs(l-r)>1){
mid = l + (r-l)/2;
if(solve(mid))
l = mid;
else
r = mid;
}
*/
//bit
/*
rep(bit,1<<N){
vint S;
rep(i,N){
if (bit & (1 << i))
S.push_back(i);
}
}
*/
//
/*
int N, M;
cin >> N >> M;
Graph G(N + 1);
rep(i, M) {
int a, b;
cin >> a >> b;
G[a].push_back(b);
G[b].push_back(a);
}
*/
//BFS
/*
vector<int> dist(N+1, -1);
queue<int> que;
dist[1] = 0;
que.push(1);
while (!que.empty()) {
int v = que.front();
que.pop();
for (int nv : G[v]) {
if (dist[nv] != -1)
continue;
dist[nv] = dist[v] + 1;
que.push(nv);
}
}
*/
//BFS
/*
vvint dist(H, vint(W, -1));
dist[sx][sy] = 0;
queue<pint> que;
que.push({sx, sy});
while (!que.empty()) {
pint cu = que.front();
que.pop();
rep(i,4){
int nx = cu.first + dx[i];
int ny = cu.second + dy[i];
if (nx < 0 || nx >= H || ny < 0 || ny >= W || S[nx][ny] == '#')
continue;
if (dist[nx][ny] == -1) {
que.push({nx, ny});
dist[nx][ny] = dist[cu.first][cu.second] + 1;
}
}
}
rep(i,H){
rep(j,W){
if (S[i][j] == '#') {
dist[i][j] = 0;
que.push({ i, j });
}
}
}
*/
//
/*
const auto& res = prime_factorize(N);
for (auto p : res) {
}
*/
//
/*
REP(i, N) {
cout << "G[" << i << "]=";
rep(j, G[i].size)
cout << G[i][j] << " ";
cout << endl;
}
*/
// fixed << setprecision(15)<<
// << setw(2) << setfill('0')
/*
/*int NumberofDivsors(int N) {
vector<pint> a = Prime_factorize(N);
int ans = 1;
for (pint p : a)
ans *= p.second() + 1;
return ans;
}
*/
//xor
/*
a^a=0
a^x^x == a
a^x == b^x <=> a == b
a+b==a^b ⇔ a&b==0
a+b=a^b+2(a&b)
4a^(4a+1)^(4a+2)^(4a+3)=0
*/
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0