結果
| 問題 |
No.1195 数え上げを愛したい(文字列編)
|
| コンテスト | |
| ユーザー |
sak
|
| 提出日時 | 2021-01-07 06:19:13 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,272 bytes |
| コンパイル時間 | 3,125 ms |
| コンパイル使用メモリ | 202,500 KB |
| 最終ジャッジ日時 | 2025-01-17 10:04:54 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 26 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> p_ll;
template<class T>
void debug(T itr1, T itr2) { auto now = itr1; while(now<itr2) { cout << *now << " "; now++; } cout << endl; }
#define repr(i,from,to) for (int i=(int)from; i<(int)to; i++)
#define all(vec) vec.begin(), vec.end()
#define rep(i,N) repr(i,0,N)
#define per(i,N) for (int i=(int)N-1; i>=0; i--)
const ll MOD = 998244353;
const ll LLINF = pow(2,61)-1;
const int INF = pow(2,30)-1;
vector<ll> fac;
void c_fac(int x=pow(10,6)+10) { fac.resize(x,true); rep(i,x) fac[i] = i ? (fac[i-1]*i)%MOD : 1; }
ll inv(ll a, ll m=MOD) { ll b = m, x = 1, y = 0; while (b!=0) { int d = a/b; a -= b*d; swap(a,b); x -= y*d; swap(x,y); } return (x+m)%m; }
ll nck(ll n, ll k) { return fac[n]*inv(fac[k]*fac[n-k]%MOD)%MOD; }
ll modpow(ll x, ll p) { ll result = 1, now = 1, pm = x; while (now<=p) { if (p&now) { result = result * pm % MOD; } now*=2; pm = pm*pm % MOD; } return result; }
ll gcd(ll a, ll b) { if (a<b) swap(a,b); return b==0 ? a : gcd(b, a%b); }
ll lcm(ll a, ll b) { return a/gcd(a,b)*b; }
// 特殊な剰余と原始根
// (924844033, 5) 924844033 = 2^21 * 441 + 1;
// (998244353, 3) 998244353 = 2^23 * 119 + 1;
// (1012924417, 5) 1012924417 = 2^21 * 483 + 1;
// (167772161, 3) 167772161 = 2^25 * 5 + 1;
// (469762049, 3) 469762049 = 2^26 * 7 + 1;
// (1224736769, 3) 1224736769 = 2^24 * 73 + 1;
// ----------------------------------------------------------------------
// ----------------------------------------------------------------------
struct FastNumberTheoreticTransform {
ll size, size_x12, root, vsize, base;;
vector<ll> x1, x2, theta;
FastNumberTheoreticTransform(ll N=20) {
size = 1<<N; root = modpow(3,MOD/size);
theta.resize(size);
rep(i,size) theta[i] = i==0 ? 1 : theta[i-1]*root % MOD;
}
void set(vector<ll> &v1, vector<ll> &v2) {
size_x12 = v1.size() + v2.size() - 1;
vsize = 0; while ((1<<vsize)<size_x12) vsize++;
base = size>>vsize;
x1 = v1; x2 = v2;
x1.resize(1<<vsize); x2.resize(1<<vsize);
}
vector<ll> convolution(vector<ll> &x, bool rev, ll depth=0, ll pos=0) {
if (depth==vsize) return {x[pos]};
vector<ll> ex = convolution(x,rev,depth+1,pos);
vector<ll> ox = convolution(x,rev,depth+1,pos+(1<<depth));
ll N = 1<<(vsize-depth);
vector<ll> result(N);
rep(i,N) result[i] = (ex[i%(N/2)] + theta[base*(1<<depth)*i] * ox[i%(N/2)]) % MOD;
if (rev && depth==0) {
reverse(result.begin()+1, result.end());
ll invs = inv(1<<vsize);
for (auto &x: result) x = x * invs % MOD;
}
return result;
};
vector<ll> mul(vector<ll> &v1, vector<ll> &v2) {
set(v1, v2);
vector<ll> cx1 = convolution(x1, false), cx2 = convolution(x2, false);
vector<ll> cx12(1<<vsize); rep(i,1<<vsize) cx12[i] = cx1[i] * cx2[i] % MOD;
vector<ll> x12 = convolution(cx12, true);
x12.resize(size_x12);
return x12;
}
};
// ----------------------------------------------------------------------
// ----------------------------------------------------------------------
int main() {
vector<ll> v1 = {2,3,2,1}, v2 = {1,1};
FastNumberTheoreticTransform FNTT(5);
vector<ll> result_mul = FNTT.mul(v1,v2);
debug(all(result_mul));
return 0;
}
sak