結果
問題 | No.978 Fibonacci Convolution Easy |
ユーザー | 0w1 |
提出日時 | 2021-01-07 15:06:31 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 30 ms / 2,000 ms |
コード長 | 10,477 bytes |
コンパイル時間 | 2,087 ms |
コンパイル使用メモリ | 201,852 KB |
実行使用メモリ | 18,992 KB |
最終ジャッジ日時 | 2024-04-25 23:02:27 |
合計ジャッジ時間 | 3,169 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 13 ms
9,500 KB |
testcase_02 | AC | 9 ms
6,940 KB |
testcase_03 | AC | 28 ms
18,284 KB |
testcase_04 | AC | 10 ms
7,040 KB |
testcase_05 | AC | 3 ms
6,944 KB |
testcase_06 | AC | 12 ms
8,536 KB |
testcase_07 | AC | 19 ms
12,916 KB |
testcase_08 | AC | 15 ms
9,868 KB |
testcase_09 | AC | 22 ms
14,344 KB |
testcase_10 | AC | 30 ms
18,960 KB |
testcase_11 | AC | 11 ms
7,680 KB |
testcase_12 | AC | 3 ms
6,944 KB |
testcase_13 | AC | 12 ms
8,364 KB |
testcase_14 | AC | 5 ms
6,944 KB |
testcase_15 | AC | 13 ms
9,076 KB |
testcase_16 | AC | 30 ms
18,900 KB |
testcase_17 | AC | 28 ms
18,992 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; /*^ debug */ template <typename A, typename B> string to_string(pair<A, B> p); template <typename A, typename B, typename C> string to_string(tuple<A, B, C> p); template <typename A, typename B, typename C, typename D> string to_string(tuple<A, B, C, D> p); string to_string(const string& s) { return '"' + s + '"'; } string to_string(const char* s) { return to_string((string) s); } string to_string(bool b) { return (b ? "true" : "false"); } string to_string(vector<bool> v) { bool first = true; string res = "{"; for (int i = 0; i < static_cast<int>(v.size()); i++) { if (!first) { res += ", "; } first = false; res += to_string(v[i]); } res += "}"; return res; } template <size_t N> string to_string(bitset<N> v) { string res = ""; for (size_t i = 0; i < N; i++) { res += static_cast<char>('0' + v[i]); } return res; } template <typename A> string to_string(A v) { bool first = true; string res = "{"; for (const auto &x : v) { if (!first) { res += ", "; } first = false; res += to_string(x); } res += "}"; return res; } template <typename A, typename B> string to_string(pair<A, B> p) { return "(" + to_string(p.first) + ", " + to_string(p.second) + ")"; } template <typename A, typename B, typename C> string to_string(tuple<A, B, C> p) { return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ")"; } template <typename A, typename B, typename C, typename D> string to_string(tuple<A, B, C, D> p) { return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")"; } void debug_out() { cerr << endl; } template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { cerr << " " << to_string(H); debug_out(T...); } #ifdef LOCAL #define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif /* debug $*/ /*^ vector extensions */ template<typename T> T concat(initializer_list<T> lists) { T a; for (auto &l : lists) a.insert(a.end(), l.begin(), l.end()); return a; } template<typename T, size_t sz> struct _Matrix_type { typedef vector<typename _Matrix_type<T, sz - 1>::type> type; }; template<typename T> struct _Matrix_type<T, 1> { typedef T type; }; template<typename T> struct _Matrix { static auto build(size_t s) { return vector<T>(s); } template<typename ...Args> static auto build(size_t f, Args... args) { return vector<typename _Matrix_type<T, 1 + sizeof...(args)>::type>(f, _Matrix<T>::build(args...)); } }; template<typename T, typename... Args> auto buildMatrix(Args... args) { return _Matrix<T>::build(args...); } /* vector extensions $*/ /*^ generic definitions */ template<typename F> struct _RecurFun : F { _RecurFun(F&& f) : F(forward<F>(f)) {} template<typename... Args> decltype(auto) operator()(Args&&... args) const { return F::operator()(*this, forward<Args>(args)...); } }; template<typename F> decltype(auto) RecurFun(F&& f) { return _RecurFun<F> { forward<F>(f) }; } /* generic definitions $*/ /* https://codeforces.com/contest/1466/submission/102810637 */ template <typename T> T inverse(T a, T m) { T u = 0, v = 1; while (a != 0) { T t = m / a; m -= t * a; swap(a, m); u -= t * v; swap(u, v); } assert(m == 1); return u; } template <typename T> class Modular { public: using Type = typename decay<decltype(T::value)>::type; constexpr Modular() : value() {} template <typename U> Modular(const U& x) { value = normalize(x); } template <typename U> static Type normalize(const U& x) { Type v; if (-mod() <= x && x < mod()) v = static_cast<Type>(x); else v = static_cast<Type>(x % mod()); if (v < 0) v += mod(); return v; } const Type& operator()() const { return value; } template <typename U> explicit operator U() const { return static_cast<U>(value); } constexpr static Type mod() { return T::value; } Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; } Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; } template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); } template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); } Modular& operator++() { return *this += 1; } Modular& operator--() { return *this -= 1; } Modular operator++(int) { Modular result(*this); *this += 1; return result; } Modular operator--(int) { Modular result(*this); *this -= 1; return result; } Modular operator-() const { return Modular(-value); } template <typename U = T> typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) { #ifdef _WIN32 uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value); uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m; asm( "divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod()) ); value = m; #else value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value)); #endif return *this; } template <typename U = T> typename enable_if<is_same<typename Modular<U>::Type, long long>::value, Modular>::type& operator*=(const Modular& rhs) { long long q = static_cast<long long>(static_cast<long double>(value) * rhs.value / mod()); value = normalize(value * rhs.value - q * mod()); return *this; } template <typename U = T> typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) { value = normalize(value * rhs.value); return *this; } Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); } friend const Type& abs(const Modular& x) { return x.value; } template <typename U> friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs); template <typename U> friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs); template <typename V, typename U> friend V& operator>>(V& stream, Modular<U>& number); private: Type value; }; template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; } template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); } template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; } template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); } template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); } template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); } template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; } template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; } template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; } template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; } template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; } template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; } template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; } template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; } template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; } template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; } template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; } template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; } template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; } template<typename T, typename U> Modular<T> power(const Modular<T>& a, const U& b) { assert(b >= 0); Modular<T> x = a, res = 1; U p = b; while (p > 0) { if (p & 1) res *= x; x *= x; p >>= 1; } return res; } template <typename T> bool IsZero(const Modular<T>& number) { return number() == 0; } template <typename T> string to_string(const Modular<T>& number) { return to_string(number()); } // U == std::ostream? but done this way because of fastoutput template <typename U, typename T> U& operator<<(U& stream, const Modular<T>& number) { return stream << number(); } // U == std::istream? but done this way because of fastinput template <typename U, typename T> U& operator>>(U& stream, Modular<T>& number) { typename common_type<typename Modular<T>::Type, long long>::type x; stream >> x; number.value = Modular<T>::normalize(x); return stream; } /* using ModType = int; struct VarMod { static ModType value; }; ModType VarMod::value; ModType& md = VarMod::value; using Mint = Modular<VarMod>; */ constexpr int md = (int) 1e9 + 7; using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>; /*vector<Mint> fact(1, 1); vector<Mint> inv_fact(1, 1); Mint C(int n, int k) { if (k < 0 || k > n) { return 0; } while ((int) fact.size() < n + 1) { fact.push_back(fact.back() * (int) fact.size()); inv_fact.push_back(1 / fact.back()); } return fact[n] * inv_fact[k] * inv_fact[n - k]; }*/ int main() { ios::sync_with_stdio(false); int N, P; { cin >> N >> P; } vector<Mint> A(N); { A[0] = 0; A[1] = 1; for (int i = 2; i < N; ++i) A[i] = P * A[i - 1] + A[i - 2]; } vector<Mint> pa(N + 1); { for (int i = 0; i < N; ++i) pa[i + 1] = pa[i] + A[i]; } Mint res = 0; { for (int i = 0; i < N; ++i) res += pa[i + 1] * A[i]; } cout << res << endl; }