結果
| 問題 |
No.1000 Point Add and Array Add
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-01-08 15:49:09 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 467 ms / 2,000 ms |
| コード長 | 6,746 bytes |
| コンパイル時間 | 14,232 ms |
| コンパイル使用メモリ | 382,368 KB |
| 実行使用メモリ | 30,080 KB |
| 最終ジャッジ日時 | 2024-11-15 20:59:01 |
| 合計ジャッジ時間 | 20,169 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 22 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => {
read_value!($next, usize) - 1
};
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
(0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
}};
($next:expr, $t:ty) => {
$next().parse::<$t>().expect("Parse error")
};
}
#[allow(unused)]
macro_rules! debug {
($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap());
}
#[allow(unused)]
macro_rules! debugln {
($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap());
}
/**
* Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
* whose elements are elements of monoid T. Note that constructing this tree requires the identity
* element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
* Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261
* Verified by https://codeforces.com/contest/1114/submission/49759034
*/
pub trait ActionRing {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn biop(x: Self::T, y: Self::T) -> Self::T;
fn update(x: Self::T, a: Self::U, height: usize) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn e() -> Self::T;
fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
n: usize,
dep: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: ActionRing> LazySegTree<R> {
pub fn new(n_: usize) -> Self {
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
LazySegTree {
n: n,
dep: dep,
dat: vec![R::e(); 2 * n - 1],
lazy: vec![R::upe(); 2 * n - 1]
}
}
#[inline]
fn lazy_evaluate_node(&mut self, k: usize, height: usize) {
if self.lazy[k] == R::upe() { return; }
self.dat[k] = R::update(self.dat[k], self.lazy[k], height);
if k < self.n - 1 {
self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);
self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);
}
self.lazy[k] = R::upe(); // identity for upop
}
#[inline]
fn update_node(&mut self, k: usize) {
self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {
self.lazy_evaluate_node(k, height);
// [a,b) and [l,r) intersects?
if r <= a || b <= l {return;}
if a <= l && r <= b {
self.lazy[k] = R::upop(self.lazy[k], v);
self.lazy_evaluate_node(k, height);
return;
}
self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);
self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);
self.update_node(k);
}
/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */
#[inline]
pub fn update(&mut self, a: usize, b: usize, v: R::U) {
let n = self.n;
let dep = self.dep;
self.update_sub(a, b, v, 0, dep, 0, n);
}
/* l,r are for simplicity */
fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {
self.lazy_evaluate_node(k, height);
// [a,b) and [l,r) intersect?
if r <= a || b <= l {return R::e();}
if a <= l && r <= b {return self.dat[k];}
let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);
let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);
self.update_node(k);
R::biop(vl, vr)
}
/* [a, b) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, a: usize, b: usize) -> R::T {
let n = self.n;
let dep = self.dep;
self.query_sub(a, b, 0, dep, 0, n)
}
}
struct AR;
impl ActionRing for AR {
type T = (i64, i64); // data
type U = (i64, i64); // action (c, d) : (a, b) -> (a + d, a * c + b)
fn biop(x: Self::T, y: Self::T) -> Self::T {
(x.0 + y.0, x.1 + y.1)
}
fn update(x: Self::T, (c, d): Self::U, _height: usize) -> Self::T {
(x.0 + d, x.0 * c + x.1)
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
(fst.0 + snd.0, fst.1 * snd.0 + snd.1)
}
fn e() -> Self::T {
(0, 0)
}
fn upe() -> Self::U {
(0, 0)
}
}
fn solve() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {
($($format:tt)*) => (let _ = write!(out,$($format)*););
}
input! {
n: usize, q: usize,
a: [i64; n],
cxy: [(chars, usize1, usize1); q],
}
let mut st = LazySegTree::<AR>::new(n);
for i in 0..n {
st.update(i, i + 1, (0, a[i]));
}
for &(ref c, x, y) in &cxy {
if c == &['A'] {
let y = (y + 1) as i64;
st.update(x, x + 1, (0, y));
} else {
st.update(x, y + 1, (1, 0));
}
}
for i in 0..n {
let (_, a) = st.query(i, i + 1);
puts!("{}{}", a, if i + 1 == n { "\n" } else { " " });
}
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}