結果
問題 | No.1331 Moving Penguin |
ユーザー | kaage |
提出日時 | 2021-01-08 22:05:50 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
RE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 9,801 bytes |
コンパイル時間 | 8,483 ms |
コンパイル使用メモリ | 208,412 KB |
最終ジャッジ日時 | 2025-01-17 12:11:50 |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | RE * 49 |
ソースコード
#line 2 "library/other/template.hpp" #define _CRT_SECURE_NO_WARNINGS #ifdef ONLINE_JUDGE #pragma GCC target("avx512f") #else #pragma GCC target("avx2") #endif #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <string.h> #include <algorithm> #include <bitset> #include <cassert> #include <cfloat> #include <climits> #include <cmath> #include <complex> #include <ctime> #include <deque> #include <fstream> #include <functional> #include <iomanip> #include <iostream> #include <iterator> #include <list> #include <map> #include <memory> #include <queue> #include <random> #include <set> #include <stack> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #define rep(i, n) for (int i = 0; i < int(n); i++) #define REP(i, n) for (int i = 1; i <= int(n); i++) #define all(V) V.begin(), V.end() typedef unsigned int uint; typedef long long lint; typedef unsigned long long ulint; typedef std::pair<int, int> P; typedef std::pair<lint, lint> LP; constexpr int INF = INT_MAX / 2; constexpr lint LINF = LLONG_MAX / 2; constexpr double eps = DBL_EPSILON; constexpr double PI = 3.141592653589793238462643383279; namespace std { template <template <class...> class Temp, class T> class is_template_with_type_of : public std::false_type {}; template <template <class...> class Temp, class... Args> class is_template_with_type_of<Temp, Temp<Args...>> : public std::true_type {}; template <template <auto...> class Temp, class T> class is_template_with_non_type_of : public std::false_type {}; template <template <auto...> class Temp, auto... Args> class is_template_with_non_type_of<Temp, Temp<Args...>> : public std::true_type {}; }; // namespace std template <class T> class prique : public std::priority_queue<T, std::vector<T>, std::greater<T>> { }; template <class F> inline constexpr decltype(auto) lambda_fix(F&& f) { return [f = std::forward<F>(f)](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; } template <class T> std::vector<T> make_vec(size_t n) { return std::vector<T>(n); } template <class T, class... Args> auto make_vec(size_t n, Args&&... args) { return std::vector<decltype(make_vec<T>(args...))>( n, make_vec<T>(std::forward<Args>(args)...)); } template <class T, class U> inline bool chmax(T& lhs, const U& rhs) { if (lhs < rhs) { lhs = rhs; return true; } return false; } template <class T, class U> inline bool chmin(T& lhs, const U& rhs) { if (lhs > rhs) { lhs = rhs; return true; } return false; } inline lint gcd(lint a, lint b) { while (b) { lint c = a; a = b; b = c % b; } return a; } inline lint lcm(lint a, lint b) { return a / gcd(a, b) * b; } bool isprime(lint n) { if (n == 1) return false; for (int i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } template <class T> T mypow(T a, lint b) { T res(1); while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } lint modpow(lint a, lint b, lint m) { a %= m; lint res(1); while (b) { if (b & 1) { res *= a; res %= m; } a *= a; a %= m; b >>= 1; } return res; } template <class T> void printArray(std::vector<T>& vec, char split = ' ') { rep(i, vec.size()) { std::cout << vec[i]; std::cout << (i == (int)vec.size() - 1 ? '\n' : split); } } template <class T> void printArray(T l, T r, char split = ' ') { T rprev = std::prev(r); for (T i = l; i != r; i++) { std::cout << *i; std::cout << (i == rprev ? '\n' : split); } } LP extGcd(lint a, lint b) { if (b == 0) return {1, 0}; LP s = extGcd(b, a % b); std::swap(s.first, s.second); s.second -= a / b * s.first; return s; } LP ChineseRem(const lint& b1, const lint& m1, const lint& b2, const lint& m2) { lint p = extGcd(m1, m2).first; lint tmp = (b2 - b1) * p % m2; lint r = (b1 + m1 * tmp + m1 * m2) % (m1 * m2); return std::make_pair(r, m1 * m2); } int LCS(const std::string& a, const std::string& b) { auto dp = make_vec<int>(a.size() + 1, b.size() + 1); rep(i, a.size()) { rep(j, b.size()) { chmax(dp[i + 1][j], dp[i][j]); chmax(dp[i][j + 1], dp[i][j]); if (a[i] == b[j]) chmax(dp[i + 1][j + 1], dp[i][j] + 1); } chmax(dp[i + 1][b.size()], dp[i][b.size()]); } rep(j, b.size()) chmax(dp[a.size()][j + 1], dp[a.size()][j]); return dp[a.size()][b.size()]; } #line 3 "library/algebraic/DynamicModInt.hpp" class DynamicModInt { lint value; public: static uint modulo; DynamicModInt() : value(0) {} template <class T> DynamicModInt(T value = 0) : value(value) { if (value < 0) value = -(lint)(-value % modulo) + modulo; this->value = value % modulo; } static inline void setMod(const uint& mod) { modulo = mod; } inline DynamicModInt inv() const { return mypow(*this, modulo - 2); } inline operator int() const { return value; } inline DynamicModInt& operator+=(const DynamicModInt& x) { value += x.value; if (value >= modulo) value -= modulo; return *this; } inline DynamicModInt& operator++() { if (value == modulo - 1) value = 0; else value++; return *this; } inline DynamicModInt operator++(int) { DynamicModInt res = *this; --*this; return res; } inline DynamicModInt operator-() const { return DynamicModInt(0) -= *this; } inline DynamicModInt& operator-=(const DynamicModInt& x) { value -= x.value; if (value < 0) value += modulo; return *this; } inline DynamicModInt& operator--() { if (value == 0) value = modulo - 1; else value--; return *this; } inline DynamicModInt operator--(int) { DynamicModInt res = *this; --*this; return res; } inline DynamicModInt& operator*=(const DynamicModInt& x) { value = value * x.value % modulo; return *this; } inline DynamicModInt& operator/=(const DynamicModInt& rhs) { return *this *= rhs.inv(); } template <class T> DynamicModInt operator+(const T& rhs) const { return DynamicModInt(*this) += rhs; } template <class T> DynamicModInt& operator+=(const T& rhs) { return operator+=(DynamicModInt(rhs)); } template <class T> DynamicModInt operator-(const T& rhs) const { return DynamicModInt(*this) -= rhs; } template <class T> DynamicModInt& operator-=(const T& rhs) { return operator-=(DynamicModInt(rhs)); } template <class T> DynamicModInt operator*(const T& rhs) const { return DynamicModInt(*this) *= rhs; } template <class T> DynamicModInt& operator*=(const T& rhs) { return operator*=(DynamicModInt(rhs)); } template <class T> DynamicModInt operator/(const T& rhs) const { return DynamicModInt(*this) /= rhs; } template <class T> DynamicModInt& operator/=(const T& rhs) { return operator/=(DynamicModInt(rhs)); } }; uint DynamicModInt::modulo = 1000000007; std::istream& operator>>(std::istream& ist, DynamicModInt& x) { lint a; ist >> a; x = a; return ist; } #line 4 "library/algebraic/StaticModInt.hpp" template <uint modulo> class StaticModInt { lint value; public: static constexpr uint mod_value = modulo; StaticModInt() : value(0) {} template <class T, std::enable_if_t<!std::is_convertible_v<T, StaticModInt>, std::nullptr_t> = nullptr> StaticModInt(T value = 0) : value(value) { this->value = (value < 0 ? -(-value % modulo) + modulo : value) % modulo; } inline StaticModInt inv() const { return mypow(*this, modulo - 2); } inline operator int() const { return value; } inline StaticModInt& operator+=(const StaticModInt& x) { value += x.value; if (value >= modulo) value -= modulo; return *this; } inline StaticModInt& operator++() { if (value == modulo - 1) value = 0; else value++; return *this; } inline StaticModInt operator++(int) { StaticModInt res = *this; ++*this; return res; } inline StaticModInt operator-() const { return StaticModInt(0) -= *this; } inline StaticModInt& operator-=(const StaticModInt& x) { value -= x.value; if (value < 0) value += modulo; return *this; } inline StaticModInt& operator--() { if (value == 0) value = modulo - 1; else value--; return *this; } inline StaticModInt operator--(int) { StaticModInt res = *this; --*this; return res; } inline StaticModInt& operator*=(const StaticModInt& x) { value = value * x.value % modulo; return *this; } inline StaticModInt& operator/=(const StaticModInt& rhs) { return *this *= rhs.inv(); } template <class T> StaticModInt operator+(const T& rhs) const { return StaticModInt(*this) += rhs; } template <class T> StaticModInt& operator+=(const T& rhs) { return operator+=(StaticModInt(rhs)); } template <class T> StaticModInt operator-(const T& rhs) const { return StaticModInt(*this) -= rhs; } template <class T> StaticModInt& operator-=(const T& rhs) { return operator-=(StaticModInt(rhs)); } template <class T> StaticModInt operator*(const T& rhs) const { return StaticModInt(*this) *= rhs; } template <class T> StaticModInt& operator*=(const T& rhs) { return operator*=(StaticModInt(rhs)); } template <class T> StaticModInt operator/(const T& rhs) const { return StaticModInt(*this) /= rhs; } template <class T> StaticModInt& operator/=(const T& rhs) { return operator/=(StaticModInt(rhs)); } }; template <uint modulo> std::istream& operator>>(std::istream& ist, StaticModInt<modulo>& x) { lint a; ist >> a; x = a; return ist; } #line 3 "main.cpp" using ModInt = StaticModInt<1000000007>; int N, A[100010]; ModInt dp[100010]; auto vec = make_vec<ModInt>(320, 320); int main() { std::cin >> N; REP(i, N) std::cin >> A[i]; dp[1] = 1; int B = std::sqrt(N); REP(i, N) { REP(j, B) dp[i] += vec[j][i % j]; if (i && A[i - 1] != 1) dp[i] += dp[i - 1]; if (A[i] <= B) { vec[A[i]][i % A[i]] += dp[i]; } else { for (int j = i + A[i]; j <= N; j += A[i]) dp[j] += dp[i]; } } std::cout << dp[N] << std::endl; return 0; }