結果

問題 No.1332 Range Nearest Query
ユーザー くれちーくれちー
提出日時 2021-01-08 22:07:51
言語 Rust
(1.77.0 + proconio)
結果
WA  
実行時間 -
コード長 17,781 bytes
コンパイル時間 14,621 ms
コンパイル使用メモリ 378,652 KB
実行使用メモリ 13,864 KB
最終ジャッジ日時 2024-11-16 12:25:53
合計ジャッジ時間 87,761 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 2,047 ms
10,872 KB
testcase_04 WA -
testcase_05 AC 1,925 ms
10,748 KB
testcase_06 AC 1,606 ms
13,856 KB
testcase_07 AC 1,642 ms
13,688 KB
testcase_08 AC 1,632 ms
13,856 KB
testcase_09 AC 1,589 ms
13,860 KB
testcase_10 AC 1,632 ms
13,736 KB
testcase_11 AC 1,646 ms
13,732 KB
testcase_12 AC 1,701 ms
13,736 KB
testcase_13 AC 1,853 ms
13,860 KB
testcase_14 AC 1,707 ms
13,804 KB
testcase_15 AC 1,668 ms
13,732 KB
testcase_16 AC 1,994 ms
13,732 KB
testcase_17 AC 2,030 ms
13,732 KB
testcase_18 AC 1,972 ms
13,864 KB
testcase_19 AC 1,940 ms
13,856 KB
testcase_20 AC 1,926 ms
13,736 KB
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 AC 1,923 ms
13,728 KB
testcase_25 AC 1,948 ms
13,864 KB
testcase_26 AC 1,071 ms
13,772 KB
testcase_27 AC 1,070 ms
13,772 KB
testcase_28 AC 225 ms
5,248 KB
testcase_29 AC 253 ms
5,248 KB
testcase_30 AC 258 ms
5,248 KB
testcase_31 AC 249 ms
5,248 KB
testcase_32 AC 252 ms
5,248 KB
testcase_33 AC 257 ms
5,248 KB
testcase_34 AC 246 ms
5,248 KB
testcase_35 AC 244 ms
5,248 KB
testcase_36 AC 255 ms
5,248 KB
testcase_37 AC 261 ms
5,248 KB
testcase_38 WA -
testcase_39 WA -
testcase_40 AC 1,913 ms
13,444 KB
testcase_41 WA -
testcase_42 AC 1,595 ms
7,744 KB
testcase_43 WA -
testcase_44 AC 1,792 ms
9,956 KB
testcase_45 WA -
testcase_46 AC 1,642 ms
6,452 KB
testcase_47 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

// The main code is at the very bottom.

#[allow(unused_imports)]
use {
  lib::byte::ByteChar,
  std::cell::{Cell, RefCell},
  std::cmp::{
    self,
    Ordering::{self, *},
    Reverse,
  },
  std::collections::*,
  std::convert::identity,
  std::fmt::{self, Debug, Display, Formatter},
  std::io::prelude::*,
  std::iter::{self, FromIterator},
  std::marker::PhantomData,
  std::mem,
  std::num::Wrapping,
  std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive},
  std::process,
  std::rc::Rc,
  std::thread,
  std::time::{Duration, Instant},
  std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize},
};

#[allow(unused_imports)]
#[macro_use]
pub mod lib {
  pub mod byte {
    pub use self::byte_char::*;

    mod byte_char {
      use std::error::Error;
      use std::fmt::{self, Debug, Display, Formatter};
      use std::str::FromStr;

      #[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
      #[repr(transparent)]
      pub struct ByteChar(pub u8);

      impl Debug for ByteChar {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          write!(f, "b'{}'", self.0 as char)
        }
      }

      impl Display for ByteChar {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          write!(f, "{}", self.0 as char)
        }
      }

      impl FromStr for ByteChar {
        type Err = ParseByteCharError;

        fn from_str(s: &str) -> Result<ByteChar, ParseByteCharError> {
          match s.as_bytes().len() {
            1 => Ok(ByteChar(s.as_bytes()[0])),
            0 => Err(ParseByteCharErrorKind::EmptyStr.into()),
            _ => Err(ParseByteCharErrorKind::TooManyBytes.into()),
          }
        }
      }

      #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
      pub struct ParseByteCharError {
        kind: ParseByteCharErrorKind,
      }

      impl Display for ParseByteCharError {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          f.write_str(match self.kind {
            ParseByteCharErrorKind::EmptyStr => "empty string",
            ParseByteCharErrorKind::TooManyBytes => "too many bytes",
          })
        }
      }

      impl Error for ParseByteCharError {}

      #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
      enum ParseByteCharErrorKind {
        EmptyStr,
        TooManyBytes,
      }

      impl From<ParseByteCharErrorKind> for ParseByteCharError {
        fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError {
          ParseByteCharError { kind }
        }
      }
    }
  }

  pub mod io {
    pub use self::scanner::*;

    mod scanner {
      use std::io::{self, BufRead};
      use std::iter;
      use std::str::FromStr;

      #[derive(Debug)]
      pub struct Scanner<R> {
        reader: R,
        buf: String,
        pos: usize,
      }

      impl<R: BufRead> Scanner<R> {
        pub fn new(reader: R) -> Self {
          Scanner {
            reader,
            buf: String::new(),
            pos: 0,
          }
        }

        pub fn next(&mut self) -> io::Result<&str> {
          let start = loop {
            match self.rest().find(|c| c != ' ') {
              Some(i) => break i,
              None => self.fill_buf()?,
            }
          };
          self.pos += start;
          let len = self.rest().find(' ').unwrap_or(self.rest().len());
          let s = &self.buf[self.pos..][..len]; // self.rest()[..len]
          self.pos += len;
          Ok(s)
        }

        pub fn parse_next<T>(&mut self) -> io::Result<Result<T, T::Err>>
        where
          T: FromStr,
        {
          Ok(self.next()?.parse())
        }

        pub fn parse_next_n<T>(&mut self, n: usize) -> io::Result<Result<Vec<T>, T::Err>>
        where
          T: FromStr,
        {
          iter::repeat_with(|| self.parse_next()).take(n).collect()
        }

        pub fn map_next_bytes<T, F>(&mut self, mut f: F) -> io::Result<Vec<T>>
        where
          F: FnMut(u8) -> T,
        {
          Ok(self.next()?.bytes().map(&mut f).collect())
        }

        pub fn map_next_bytes_n<T, F>(&mut self, n: usize, mut f: F) -> io::Result<Vec<Vec<T>>>
        where
          F: FnMut(u8) -> T,
        {
          iter::repeat_with(|| self.map_next_bytes(&mut f))
            .take(n)
            .collect()
        }

        fn rest(&self) -> &str {
          &self.buf[self.pos..]
        }

        fn fill_buf(&mut self) -> io::Result<()> {
          self.buf.clear();
          self.pos = 0;
          let read = self.reader.read_line(&mut self.buf)?;
          if read == 0 {
            return Err(io::ErrorKind::UnexpectedEof.into());
          }
          if *self.buf.as_bytes().last().unwrap() == b'\n' {
            self.buf.pop();
          }
          Ok(())
        }
      }
    }
  }
}

#[allow(dead_code)]
mod n91lib_rs {

  pub mod data_structure {

    pub mod bit_vector {
      use crate::n91lib_rs::other::bit::access;
      use crate::n91lib_rs::other::bit::rank;
      use crate::n91lib_rs::other::bit::select;
      use crate::n91lib_rs::other::bit::WORD;
      use std::iter::FromIterator;
      use std::iter::IntoIterator;
      use std::iter::Iterator;

      pub struct BitVector {
        data: Box<[Node]>,
      }

      struct Node {
        bit: usize,
        sum: usize,
      }

      impl BitVector {
        pub fn access(&self, index: usize) -> bool {
          access(self.data[index / WORD].bit, index % WORD)
        }

        pub fn rank0(&self, end: usize) -> usize {
          end - self.rank1(end)
        }

        pub fn rank1(&self, end: usize) -> usize {
          let t = &self.data[end / WORD];
          t.sum + rank(t.bit, end % WORD)
        }

        pub fn select0(&self, k: usize) -> usize {
          let (mut st, mut en) = (0, self.data.len());
          while en - st != 1 {
            let mid = (st + en) / 2;
            if mid * WORD - self.data[mid].sum <= k {
              st = mid;
            } else {
              en = mid;
            }
          }
          let rem = k - (st * WORD - self.data[st].sum);
          st * WORD + select(!self.data[st].bit, rem)
        }

        pub fn select1(&self, k: usize) -> usize {
          let (mut st, mut en) = (0, self.data.len());
          while en - st != 1 {
            let mid = (st + en) / 2;
            if self.data[mid].sum <= k {
              st = mid;
            } else {
              en = mid;
            }
          }
          let rem = k - self.data[st].sum;
          st * WORD + select(self.data[st].bit, rem)
        }
      }

      impl FromIterator<bool> for BitVector {
        fn from_iter<T: IntoIterator<Item = bool>>(iter: T) -> Self {
          let mut iter = iter.into_iter();
          let mut v = Vec::new();
          let mut sum = 0;
          'base: loop {
            let mut bit = 0;
            for i in 0..WORD {
              match iter.next() {
                Some(v) => {
                  if v {
                    bit |= 1 << i;
                  }
                }
                None => {
                  v.push(Node { bit: bit, sum: sum });
                  break 'base;
                }
              }
            }
            v.push(Node { bit: bit, sum: sum });
            sum += bit.count_ones() as usize;
          }
          Self {
            data: v.into_boxed_slice(),
          }
        }
      }
    }

    pub mod wavelet_matrix {

      use crate::n91lib_rs::data_structure::BitVector;
      use crate::n91lib_rs::other::bit::access;
      use std::ops::Range;

      pub struct WaveletMatrix {
        data: Box<[(usize, BitVector)]>,
      }

      impl WaveletMatrix {
        pub fn new(bitlen: usize, mut seq: Vec<usize>) -> Self {
          let len = seq.len();
          let mut data = Vec::new();
          for l in (0..bitlen).rev() {
            let v = seq.iter().map(|&x| access(x, l)).collect::<BitVector>();
            data.push((v.rank0(len), v));
            let zeros = seq.iter().filter(|&&x| !access(x, l)).cloned();
            let ones = seq.iter().filter(|&&x| access(x, l)).cloned();
            seq = zeros.chain(ones).collect();
          }
          Self {
            data: data
              .into_iter()
              .rev()
              .collect::<Vec<_>>()
              .into_boxed_slice(),
          }
        }

        pub fn access(&self, mut index: usize) -> usize {
          let mut ret = 0;
          for (l, &(z, ref v)) in self.base_iter().rev() {
            if !v.access(index) {
              index = v.rank0(index);
            } else {
              ret |= 1 << l;
              index = z + v.rank1(index);
            }
          }
          ret
        }

        pub fn rank(&self, value: usize, mut range: Range<usize>) -> usize {
          for (l, &(z, ref v)) in self.base_iter().rev() {
            if !access(value, l) {
              range.start = v.rank0(range.start);
              range.end = v.rank0(range.end);
            } else {
              range.start = z + v.rank1(range.start);
              range.end = z + v.rank1(range.end);
            }
          }
          range.end - range.start
        }

        pub fn select(&self, value: usize, k: usize) -> usize {
          let mut index = 0;
          for (l, &(z, ref v)) in self.base_iter().rev() {
            if !access(value, l) {
              index = v.rank0(index);
            } else {
              index = z + v.rank1(index);
            }
          }
          index += k;
          for (_, &(z, ref v)) in self.base_iter() {
            if index < z {
              index = v.select0(index);
            } else {
              index = v.select1(index - z);
            }
          }
          index
        }

        pub fn count(&self, idxrng: Range<usize>, valrng: Range<usize>) -> usize {
          self.count_to(idxrng.clone(), valrng.end) - self.count_to(idxrng, valrng.start)
        }

        pub fn quantile(&self, mut range: Range<usize>, mut k: usize) -> usize {
          let mut ret = 0;
          for (l, &(z, ref v)) in self.base_iter().rev() {
            let zeros = v.rank0(range.end) - v.rank0(range.start);
            if zeros > k {
              range.start = v.rank0(range.start);
              range.end = v.rank0(range.end);
            } else {
              k -= zeros;
              ret |= 1 << l;
              range.start = z + v.rank1(range.start);
              range.end = z + v.rank1(range.end);
            }
          }
          ret
        }

        fn count_to(&self, mut range: Range<usize>, val: usize) -> usize {
          let mut ret = 0;
          for (l, &(z, ref v)) in self.base_iter().rev() {
            if !access(val, l) {
              range.start = v.rank0(range.start);
              range.end = v.rank0(range.end);
            } else {
              ret += v.rank0(range.end) - v.rank0(range.start);
              range.start = z + v.rank1(range.start);
              range.end = z + v.rank1(range.end);
            }
          }
          ret
        }

        fn base_iter(&self) -> impl DoubleEndedIterator<Item = (usize, &(usize, BitVector))> {
          self.data.iter().enumerate()
        }
      }
    }

    pub use bit_vector::BitVector;
  }
  pub mod other {

    pub mod bit {
      pub const WORD: usize = (0 as usize).count_zeros() as usize;

      pub fn access(bit: usize, index: usize) -> bool {
        bit & 1 << index != 0
      }

      pub fn rank(bit: usize, end: usize) -> usize {
        (bit & !(!0 << end)).count_ones() as usize
      }

      #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
      pub fn select(bit: usize, k: usize) -> usize {
        macro_rules! select_impl {
          ($k: expr, $({$b: expr, $m: expr, $s: expr}),*) => {
            let mut k = $k;
            let mut r = 0;
            $(
              let b = ($b >> r & $m) as usize;
              if k >= b {
                k -= b;
                r += $s;
              }
            )*
            r
          }
        }

        #[cfg(target_arch = "x86")]
        {
          if is_x86_feature_detected!("bmi2") {
            use std::arch::x86::_pdep_u32;
            unsafe { _pdep_u32(1 << k, bit as u32).trailing_zeros() as usize }
          } else {
            let b0 = bit as u32;
            let b1 = (b0 & 0x55555555) + (b0 >> 1 & 0x55555555);
            let b2 = (b1 & 0x33333333) + (b1 >> 2 & 0x33333333);
            let b3 = b2 + (b2 >> 4) & 0x0F0F0F0F;
            let b4 = b3 + (b3 >> 8) & 0x00FF00FF;
            let b5 = b4 + (b4 >> 16) & 0x0000FFFF;
            if k >= b5 as usize {
              return 32;
            }
            #[allow(unused_assignments)]
            {
              select_impl! {
                k,
                {b4, 0xFFFF, 16},
                {b3, 0xFF, 8},
                {b2, 0xF, 4},
                {b1, 0x3, 2},
                {b0, 0x1, 1}
              }
            }
          }
        }
        #[cfg(target_arch = "x86_64")]
        {
          if is_x86_feature_detected!("bmi2") {
            use std::arch::x86_64::_pdep_u64;
            unsafe { _pdep_u64(1 << k, bit as u64).trailing_zeros() as usize }
          } else {
            let b0 = bit as u64;
            let b1 = (b0 & 0x5555555555555555) + (b0 >> 1 & 0x5555555555555555);
            let b2 = (b1 & 0x3333333333333333) + (b1 >> 2 & 0x3333333333333333);
            let b3 = b2 + (b2 >> 4) & 0x0F0F0F0F0F0F0F0F;
            let b4 = b3 + (b3 >> 8) & 0x00FF00FF00FF00FF;
            let b5 = b4 + (b4 >> 16) & 0x0000FFFF0000FFFF;
            let b6 = b5 + (b5 >> 32) & 0x00000000FFFFFFFF;
            if k >= b6 as usize {
              return 64;
            }

            #[allow(unused_assignments)]
            {
              select_impl! {
                k,
                {b5, 0xFFFFFFFF, 32},
                {b4, 0xFFFF, 16},
                {b3, 0xFF, 8},
                {b2, 0xF, 4},
                {b1, 0x3, 2},
                {b0, 0x1, 1}
              }
            }
          }
        }
      }

      pub fn bsf(bit: usize) -> usize {
        assert_ne!(bit, 0);
        bit.trailing_zeros() as usize
      }

      pub fn bsr(bit: usize) -> usize {
        assert_ne!(bit, 0);
        WORD - 1 - bit.leading_zeros() as usize
      }

      pub fn ceil_log2(n: usize) -> usize {
        assert_ne!(n, 0);
        WORD - 1 - (2 * n - 1).leading_zeros() as usize
      }
    }
  }
}

#[allow(unused_macros)]
macro_rules! eprint {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::eprint!($($arg)*)
    }
  };
}
#[allow(unused_macros)]
macro_rules! eprintln {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::eprintln!($($arg)*)
    }
  };
}
#[allow(unused_macros)]
macro_rules! dbg {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::dbg!($($arg)*)
    } else {
      ($($arg)*)
    }
  };
}

const CUSTOM_STACK_SIZE_MIB: Option<usize> = Some(1024);
const INTERACTIVE: bool = false;

fn main() -> std::io::Result<()> {
  match CUSTOM_STACK_SIZE_MIB {
    Some(stack_size_mib) => std::thread::Builder::new()
      .name("run_solver".to_owned())
      .stack_size(stack_size_mib * 1024 * 1024)
      .spawn(run_solver)?
      .join()
      .unwrap(),
    None => run_solver(),
  }
}

fn run_solver() -> std::io::Result<()> {
  let stdin = std::io::stdin();
  let reader = stdin.lock();
  let stdout = std::io::stdout();
  let writer = stdout.lock();
  macro_rules! with_wrapper {
    ($($wrapper:expr)?) => {{
      let mut writer = $($wrapper)?(writer);
      solve(reader, &mut writer)?;
      writer.flush()
    }};
  }
  if cfg!(debug_assertions) || INTERACTIVE {
    with_wrapper!()
  } else {
    with_wrapper!(std::io::BufWriter::new)
  }
}

fn solve<R, W>(reader: R, mut writer: W) -> std::io::Result<()>
where
  R: BufRead,
  W: Write,
{
  let mut _scanner = lib::io::Scanner::new(reader);
  #[allow(unused_macros)]
  macro_rules! scan {
    ($T:ty) => {
      _scanner.parse_next::<$T>()?.unwrap()
    };
    ($($T:ty),+) => {
      ($(scan!($T)),+)
    };
    ($T:ty; $n:expr) => {
      _scanner.parse_next_n::<$T>($n)?.unwrap()
    };
    ($($T:ty),+; $n:expr) => {
      iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) })
        .take($n)
        .collect::<std::io::Result<Vec<_>>>()?
    };
  }
  #[allow(unused_macros)]
  macro_rules! scan_bytes_map {
    ($f:expr) => {
      _scanner.map_next_bytes($f)?
    };
    ($f:expr; $n:expr) => {
      _scanner.map_next_bytes_n($n, $f)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! print {
    ($($arg:tt)*) => {
      write!(writer, $($arg)*)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! println {
    ($($arg:tt)*) => {
      writeln!(writer, $($arg)*)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! answer {
    ($($arg:tt)*) => {{
      println!($($arg)*);
      return Ok(());
    }};
  }
  {
    use n91lib_rs::data_structure::wavelet_matrix::WaveletMatrix;

    fn dist(x: usize, y: usize) -> usize {
      if x > y {
        x - y
      } else {
        y - x
      }
    }

    let n = scan!(usize);
    let x = scan!(usize; n);

    let &max = x.iter().max().unwrap();
    let wm = WaveletMatrix::new(30, x);

    let q = scan!(usize);
    for _ in 0..q {
      let (l, r, x) = scan!(usize, usize, usize);
      let (l, r) = (l - 1, r - 1);

      let nth = |i| wm.quantile(l..r + 1, i);
      let mut ok = 0;
      let mut ng = max + 1;
      while ng - ok > 1 {
        let mid = (ok + ng) / 2;
        if nth(mid) <= x {
          ok = mid;
        } else {
          ng = mid;
        }
      }
      let ans = cmp::min(dist(x, nth(ok)), dist(x, nth(ok + 1)));
      println!("{}", ans);
    }
  }
  #[allow(unreachable_code)]
  Ok(())
}
0