結果

問題 No.1333 Squared Sum
ユーザー tokusakuraitokusakurai
提出日時 2021-01-08 23:01:10
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 197 ms / 2,000 ms
コード長 4,412 bytes
コンパイル時間 2,672 ms
コンパイル使用メモリ 211,480 KB
実行使用メモリ 50,944 KB
最終ジャッジ日時 2024-11-16 15:08:25
合計ジャッジ時間 8,448 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 146 ms
17,536 KB
testcase_04 AC 150 ms
17,536 KB
testcase_05 AC 150 ms
17,536 KB
testcase_06 AC 145 ms
17,664 KB
testcase_07 AC 156 ms
17,536 KB
testcase_08 AC 147 ms
17,536 KB
testcase_09 AC 144 ms
17,536 KB
testcase_10 AC 142 ms
17,536 KB
testcase_11 AC 151 ms
17,664 KB
testcase_12 AC 137 ms
17,664 KB
testcase_13 AC 162 ms
50,944 KB
testcase_14 AC 179 ms
33,920 KB
testcase_15 AC 197 ms
46,592 KB
testcase_16 AC 2 ms
5,248 KB
testcase_17 AC 2 ms
5,248 KB
testcase_18 AC 1 ms
5,248 KB
testcase_19 AC 1 ms
5,248 KB
testcase_20 AC 2 ms
5,248 KB
testcase_21 AC 2 ms
5,248 KB
testcase_22 AC 2 ms
5,248 KB
testcase_23 AC 2 ms
5,248 KB
testcase_24 AC 2 ms
5,248 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 187 ms
50,048 KB
testcase_27 AC 188 ms
34,816 KB
testcase_28 AC 197 ms
49,488 KB
testcase_29 AC 164 ms
50,792 KB
testcase_30 AC 52 ms
9,216 KB
testcase_31 AC 28 ms
6,656 KB
testcase_32 AC 88 ms
11,776 KB
testcase_33 AC 61 ms
10,104 KB
testcase_34 AC 105 ms
14,716 KB
testcase_35 AC 78 ms
11,888 KB
testcase_36 AC 43 ms
8,320 KB
testcase_37 AC 46 ms
8,704 KB
testcase_38 AC 54 ms
9,472 KB
testcase_39 AC 88 ms
13,032 KB
testcase_40 AC 116 ms
20,840 KB
testcase_41 AC 113 ms
20,840 KB
testcase_42 AC 114 ms
20,968 KB
testcase_43 AC 102 ms
20,836 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i = 0; i < n; i++)
#define rep2(i, x, n) for(int i = x; i <= n; i++)
#define rep3(i, x, n) for(int i = x; i >= n; i--)
#define each(e, v) for(auto &e: v)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
//const int MOD = 998244353;
const int inf = (1<<30)-1;
const ll INF = (1LL<<60)-1;
template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;};
template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;};

struct io_setup{
    io_setup(){
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

template<int mod>
struct Mod_Int{
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(ll y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    Mod_Int &operator += (const Mod_Int &p){
        if((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator -= (const Mod_Int &p){
        if((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator *= (const Mod_Int &p){
        x = (int) (1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator /= (const Mod_Int &p){
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator ++ () {return *this += Mod_Int(1);}

    Mod_Int operator ++ (int){
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator -- () {return *this -= Mod_Int(1);}

    Mod_Int operator -- (int){
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator - () const {return Mod_Int(-x);}

    Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;}

    Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;}

    Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;}

    Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;}

    bool operator == (const Mod_Int &p) const {return x == p.x;}

    bool operator != (const Mod_Int &p) const {return x != p.x;}

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod-2);
    }

    Mod_Int pow(ll k) const{
        Mod_Int now = *this, ret = 1;
        for(; k; k >>= 1, now *= now){
            if(k&1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator << (ostream &os, const Mod_Int &p){
        return os << p.x;
    }

    friend istream &operator >> (istream &is, Mod_Int &p){
        ll a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

using mint = Mod_Int<MOD>;

template<typename T>
struct Weighted_Graph{
    struct edge{
        int to; T cost;
        edge(int to, T cost) : to(to), cost(cost) {}
    };

    vector<vector<edge>> es;
    vector<T> si, s1, s2;
    T ans;
    const T INF_T;
    const int n;

    Weighted_Graph(int n) : INF_T(numeric_limits<T>::max()/2), n(n){
        es.resize(n);
        si.resize(n), s1.resize(n), s2.resize(n);
        ans = 0;
    }

    void add_edge(int from, int to, T cost, bool directed = false){
        es[from].eb(to, cost);
        if(!directed) es[to].eb(from, cost);
    }

    void dfs(int now, int pre){
        si[now] = 1, s1[now] = 0, s2[now] = 0;

        mint S = 0;
        vector<mint> a, b;
        
        each(e, es[now]){
            if(e.to == pre) continue;
            dfs(e.to, now);
            si[now] += si[e.to];
            mint x1 = s1[e.to]+si[e.to]*e.cost;
            mint x2 = s2[e.to]+s1[e.to]*2*e.cost+si[e.to]*e.cost*e.cost;
            s1[now] += x1, s2[now] += x2;
            ans += x2;
            S += x1*x1;
            a.eb(x2), b.eb(si[e.to]);
        }

        rep(i, sz(a)){
            ans += a[i]*(si[now]-1-b[i]);
        }

        ans += s1[now]*s1[now]-S;
    }

    void solve(){
        dfs(0, -1);
        cout << ans << '\n';
    }
};

int main(){
    int N;
    cin >> N;

    Weighted_Graph<mint> G(N);
    rep(i, N-1){
        int u, v; mint w;
        cin >> u >> v >> w; u--, v--;
        G.add_edge(u, v, w);
    }

    G.solve();
}
0