結果

問題 No.1333 Squared Sum
ユーザー ThistleThistle
提出日時 2021-01-08 23:31:55
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 523 ms / 2,000 ms
コード長 8,285 bytes
コンパイル時間 2,122 ms
コンパイル使用メモリ 142,864 KB
実行使用メモリ 99,328 KB
最終ジャッジ日時 2024-11-16 18:27:56
合計ジャッジ時間 14,752 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 8 ms
12,928 KB
testcase_01 AC 9 ms
12,672 KB
testcase_02 AC 9 ms
12,672 KB
testcase_03 AC 379 ms
24,704 KB
testcase_04 AC 383 ms
24,704 KB
testcase_05 AC 389 ms
24,704 KB
testcase_06 AC 405 ms
24,704 KB
testcase_07 AC 413 ms
24,704 KB
testcase_08 AC 403 ms
24,704 KB
testcase_09 AC 387 ms
24,832 KB
testcase_10 AC 402 ms
24,704 KB
testcase_11 AC 372 ms
24,832 KB
testcase_12 AC 381 ms
24,704 KB
testcase_13 AC 467 ms
99,328 KB
testcase_14 AC 505 ms
62,208 KB
testcase_15 AC 523 ms
90,240 KB
testcase_16 AC 9 ms
12,800 KB
testcase_17 AC 9 ms
12,800 KB
testcase_18 AC 9 ms
12,800 KB
testcase_19 AC 9 ms
12,928 KB
testcase_20 AC 9 ms
12,800 KB
testcase_21 AC 9 ms
12,800 KB
testcase_22 AC 9 ms
12,800 KB
testcase_23 AC 9 ms
12,800 KB
testcase_24 AC 9 ms
12,800 KB
testcase_25 AC 8 ms
12,928 KB
testcase_26 AC 516 ms
97,280 KB
testcase_27 AC 489 ms
64,256 KB
testcase_28 AC 518 ms
96,512 KB
testcase_29 AC 466 ms
99,328 KB
testcase_30 AC 142 ms
17,792 KB
testcase_31 AC 78 ms
15,744 KB
testcase_32 AC 203 ms
20,096 KB
testcase_33 AC 158 ms
18,560 KB
testcase_34 AC 289 ms
22,400 KB
testcase_35 AC 209 ms
20,096 KB
testcase_36 AC 119 ms
17,152 KB
testcase_37 AC 122 ms
17,408 KB
testcase_38 AC 144 ms
18,176 KB
testcase_39 AC 253 ms
20,992 KB
testcase_40 AC 328 ms
31,600 KB
testcase_41 AC 309 ms
31,600 KB
testcase_42 AC 322 ms
31,600 KB
testcase_43 AC 284 ms
31,600 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC target ("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
using H = pair<ll, ll>;
using P = pair<ll, H>;
using vi = vector<ll>;
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define pb emplace_back
#define siz(a) int(a.size())
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) (lower_bound(all(b),(i))-(b).begin())
#define ssp(i,n) (i==(ll)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.find(x)!=a.end())
constexpr ll mod = (ll)1e9 + 7;
constexpr ll Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll ppc(ll x) {
    int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
    return sum;
}
void fin1() { printf("-1\n"); exit(0); }
void fin0() { printf("0\n"); exit(0); }

template<typename T>
class csum {
    vec<T> v;
public:
    csum(vec<T>& a) :v(a) { build(); }
    csum() {}
    csum(int sz) { init(sz); }
    void init(int sz) { v = vector<T>(sz + 1, 0); }
    void init(vec<T>& a) { v = a; build(); }
    void build() {
        for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
    }
    void add(int l, int r, T x) {
        v[l] += x;
        v[r] -= x;
    }//[l,r)
    void add(int t, T x) {
        v[t] += x;
    }//[l,r)
    //[l,r]
    T a(int l, int r) {
        if (r < l) return 0;
        return v[r] - (l == 0 ? 0 : v[l - 1]);
    }
    //[l,r)
    T b(int l, int r) {
        return a(l, r - 1);
    }
    T a(pair<int, int>t) {
        return a(t.first, t.second);
    }
    T b(pair<int, int>t) {
        return b(t.first, t.second);
    }
    T operator[](int x)const {
        return v[x];
    }
};
template<ll mod>
class modint {
public:ll v;
      modint(ll v = 0) { s(v % mod + mod); }
      constexpr static int fn_ = (ll)2e6 + 5;
      static vector<modint>fact, comp;
      modint pow(ll x) const {
          modint b(v), c(1);
          while (x) {
              if (x & 1) c *= b;
              b *= b;
              x >>= 1;
          }
          return c;
      }
      inline modint& s(int vv) {
          v = vv < mod ? vv : vv - mod;
          return *this;
      }
      inline modint inv()const { return pow(mod - 2); }
      inline modint operator-()const { return modint() - *this; }
      inline modint& operator+=(const modint b) { return s(v + b.v); }
      inline modint& operator-=(const modint b) { return s(v + mod - b.v); }
      inline modint& operator*=(const modint b) { v = v * b.v % mod; return *this; }
      inline modint& operator/=(const modint b) { v = v * b.inv().v % mod; return *this; }
      inline modint operator+(const modint& b) const { return modint(v) += b; }
      inline modint operator-(const modint& b) const { return modint(v) -= b; }
      inline modint operator*(const modint& b) const { return modint(v) *= b; }
      inline modint operator/(const modint& b) const { return modint(v) /= b; }
      friend ostream& operator<<(ostream& os, const modint& m) {
          return os << m.v;
      }
      friend istream& operator>>(istream& is, modint& m) {
          int x; is >> x; m = modint(x);
          return is;
      }
      bool operator<(const modint& r)const { return v < r.v; }
      bool operator>(const modint& r)const { return v > r.v; }
      bool operator<=(const modint& r)const { return v <= r.v; }
      bool operator>=(const modint& r)const { return v >= r.v; }
      bool operator==(const modint& r)const { return v == r.v; }
      bool operator!=(const modint& r)const { return v != r.v; }
      explicit operator bool()const { return v; }
      explicit operator int()const { return v; }
      modint comb(modint k) {
          if (k > *this) return modint();
          if (fact.empty()) combinit();
          if (v >= fn_) {
              if (k > *this - k) k = *this - k;
              modint tmp(1);
              for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
              return tmp * comp[k.v];
          }
          return fact[v] * comp[k.v] * comp[v - k.v];
      }//nCk
      modint perm(modint k) {
          if (k > *this) return modint();
          if (fact.empty()) combinit();
          if (v >= fn_) {
              modint tmp(1);
              for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
              return tmp;
          }
          return fact[v] * comp[v - k.v];
      }//nPk
      static void combinit() {
          fact.assign(fn_, modint());
          fact[0] = 1;
          for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * modint(i);
          comp.assign(fn_, modint());
          comp[fn_ - 1] = fact[fn_ - 1].inv();
          for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * modint(i + 1);
      }
};
using mint = modint<ll(1e9 + 7)>; template<>vec<mint> mint::fact = vec<mint>(); template<>vec<mint> mint::comp = vec<mint>();
//--------------------------------------------------------------
//--------------------------------------------------------------
ll n;
vec<H>e[300000];
ll cnt[300000];
mint dp[300000];

signed main() {
    cin >> n;
    rep(i, n - 1) {
        int u, v, w; cin >> u >> v >> w;
        u--; v--;
        e[u].pb(H{ v,w });
        e[v].pb(H{ u,w });
    }
    auto dfs = [&](int x, int p, ll cst, auto& dfs) ->pair<ll, mint> {
        ll sum = 0; mint ret = 0;
        for (auto g : e[x]) {
            if (g.fs == p) continue;
            auto t = dfs(g.fs, x, g.sc, dfs);
            sum += t.fs;
            ret += t.sc;
        }
        if (x > 0) {
            cnt[x] = sum + 1;
            dp[x] = ret;
        }
        return mkp(sum + 1, ret + (sum + 1) * cst);
    };
    dfs(0, -1, 0, dfs);
    mint ans = 0;
    auto dfs2 = [&](int x, int p, ll cst, mint r, auto& dfs2)->void {
        //とりあえずここを求める
        if (x > 0) {
            ans += mint(cst) * cst *cnt[x] * (n - cnt[x]);
            ans += (r * cnt[x] + dp[x] * (n - cnt[x]))* cst;
        }
        vec<mint> d; vi h;
        for (auto g : e[x]) {
            if (g.fs != p) {
                d.pb(dp[g.fs] + (cnt[g.fs] * g.sc));
                h.pb(cnt[g.fs]);
            }
            else d.pb(0), h.pb(0);
        }
        csum<mint>c(d);
        csum<ll>f(h);
        rep(i, siz(e[x])) {
            if (e[x][i].fs == p) continue;
            dfs2(e[x][i].fs, x, e[x][i].sc, r + c.b(0, i) + c.b(i + 1, siz(e[x])) + cst * (n - cnt[x]), dfs2);
            //x==0
        }
    };
    dfs2(0, -1, 0, 0, dfs2);
    cout << ans << endl;
}
0