結果

問題 No.1124 Earthquake Safety
ユーザー kkishi
提出日時 2021-01-09 11:36:25
言語 C++17(clang)
(17.0.6 + boost 1.87.0)
結果
AC  
実行時間 902 ms / 3,000 ms
コード長 14,050 bytes
コンパイル時間 3,895 ms
コンパイル使用メモリ 173,440 KB
実行使用メモリ 137,060 KB
最終ジャッジ日時 2024-11-17 13:53:38
合計ジャッジ時間 38,045 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 58
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:225:9: warning: #pragma once in main file [-Wpragma-once-outside-header]
  225 | #pragma once
      |         ^
1 warning generated.

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#include <boost/hana/functional/fix.hpp>
template <typename T, typename = void>
struct is_dereferenceable : std::false_type {};
template <typename T>
struct is_dereferenceable<T, std::void_t<decltype(*std::declval<T>())>>
: std::true_type {};
template <typename T, typename = void>
struct is_iterable : std::false_type {};
template <typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
decltype(std::end(std::declval<T>()))>>
: std::true_type {};
template <typename T, typename = void>
struct is_applicable : std::false_type {};
template <typename T>
struct is_applicable<T, std::void_t<decltype(std::tuple_size<T>::value)>>
: std::true_type {};
template <typename T, typename... Ts>
void debug(const T& value, const Ts&... args);
template <typename T>
void debug(const T& v) {
if constexpr (is_dereferenceable<T>::value) {
std::cerr << "{";
if (v) {
debug(*v);
} else {
std::cerr << "nil";
}
std::cerr << "}";
} else if constexpr (is_iterable<T>::value &&
!std::is_same<T, std::string>::value) {
std::cerr << "{";
for (auto it = std::begin(v); it != std::end(v); ++it) {
if (it != std::begin(v)) std::cerr << ", ";
debug(*it);
}
std::cerr << "}";
} else if constexpr (is_applicable<T>::value) {
std::cerr << "{";
std::apply([](const auto&... args) { debug(args...); }, v);
std::cerr << "}";
} else {
std::cerr << v;
}
}
template <typename T, typename... Ts>
void debug(const T& value, const Ts&... args) {
debug(value);
std::cerr << ", ";
debug(args...);
}
#if DEBUG
#define dbg(...) \
do { \
cerr << #__VA_ARGS__ << ": "; \
debug(__VA_ARGS__); \
cerr << " (L" << __LINE__ << ")\n"; \
} while (0)
#else
#define dbg(...)
#endif
void read_from_cin() {}
template <typename T, typename... Ts>
void read_from_cin(T& value, Ts&... args) {
std::cin >> value;
read_from_cin(args...);
}
#define rd(type, ...) \
type __VA_ARGS__; \
read_from_cin(__VA_ARGS__);
#define ints(...) rd(int, __VA_ARGS__);
#define strings(...) rd(string, __VA_ARGS__);
template <typename T>
void write_to_cout(const T& value) {
if constexpr (std::is_same<T, bool>::value) {
std::cout << (value ? "Yes" : "No");
} else {
std::cout << value;
}
}
template <typename T, typename... Ts>
void write_to_cout(const T& value, const Ts&... args) {
write_to_cout(value);
std::cout << ' ';
write_to_cout(args...);
}
#define wt(...) \
do { \
write_to_cout(__VA_ARGS__); \
cout << '\n'; \
} while (0)
#define all(x) (x).begin(), (x).end()
#define eb(...) emplace_back(__VA_ARGS__)
#define pb(...) push_back(__VA_ARGS__)
#define dispatch(_1, _2, _3, name, ...) name
#define as_i64(x) \
( \
[] { \
static_assert( \
std::is_integral< \
typename std::remove_reference<decltype(x)>::type>::value, \
"rep macro supports std integral types only"); \
}, \
static_cast<std::int64_t>(x))
#define rep3(i, a, b) for (std::int64_t i = as_i64(a); i < as_i64(b); ++i)
#define rep2(i, n) rep3(i, 0, n)
#define rep1(n) rep2(_loop_variable_, n)
#define rep(...) dispatch(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep3(i, a, b) for (std::int64_t i = as_i64(b) - 1; i >= as_i64(a); --i)
#define rrep2(i, n) rrep3(i, 0, n)
#define rrep1(n) rrep2(_loop_variable_, n)
#define rrep(...) dispatch(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define each3(k, v, c) for (auto&& [k, v] : c)
#define each2(e, c) for (auto&& e : c)
#define each(...) dispatch(__VA_ARGS__, each3, each2)(__VA_ARGS__)
template <typename T>
std::istream& operator>>(std::istream& is, std::vector<T>& v) {
for (T& vi : v) is >> vi;
return is;
}
template <typename T, typename U>
std::istream& operator>>(std::istream& is, std::pair<T, U>& p) {
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
bool chmax(T& a, U b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <typename T, typename U>
bool chmin(T& a, U b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <typename T, typename U>
auto max(T a, U b) {
return a > b ? a : b;
}
template <typename T, typename U>
auto min(T a, U b) {
return a < b ? a : b;
}
template <typename T>
int sz(const T& v) {
return v.size();
}
template <typename T>
int popcount(T i) {
return std::bitset<std::numeric_limits<T>::digits>(i).count();
}
template <typename T>
bool hasbit(T s, int i) {
return std::bitset<std::numeric_limits<T>::digits>(s)[i];
}
template <typename T, typename U>
auto div_ceil(T n, U d) {
return (n + d - 1) / d;
}
template <typename T>
bool even(T x) {
return x % 2 == 0;
}
const std::int64_t big = std::numeric_limits<std::int64_t>::max() / 10;
using i64 = std::int64_t;
using i32 = std::int32_t;
template <typename T>
using low_priority_queue =
std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <typename T>
using V = std::vector<T>;
template <typename T>
using VV = V<V<T>>;
void Main();
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(NULL);
std::cout << std::fixed << std::setprecision(20);
Main();
return 0;
}
const auto& Fix = boost::hana::fix;
using namespace std;
#define int i64
#pragma once
template <typename T>
class BidirectedGraph {
public:
struct Edge {
int from, to;
T weight;
Edge* back = nullptr;
Edge(int from, int to, T weight = T())
: from(from), to(to), weight(weight) {}
};
BidirectedGraph(int n) : edges_(n) {}
std::pair<Edge&, Edge&> AddEdge(int from, int to, T weight = T()) {
Edge& forward = AddDirectedEdge(from, to, weight);
Edge& back = AddDirectedEdge(to, from, weight);
forward.back = &back;
back.back = &forward;
return {forward, back};
}
const std::vector<std::unique_ptr<Edge>>& Edges(int from) const {
return edges_[from];
}
std::vector<std::unique_ptr<Edge>>& MutableEdges(int from) {
return edges_[from];
}
int NumVertices() const { return edges_.size(); }
private:
Edge& AddDirectedEdge(int from, int to, T weight = T()) {
edges_[from].push_back(std::make_unique<Edge>(from, to, weight));
return *edges_[from].back();
}
std::vector<std::vector<std::unique_ptr<Edge>>> edges_;
};
#define BIN_OPS(F) F(+) F(-) F(*) F(/)
#define CMP_OPS(F) F(!=) F(<) F(<=) F(==) F(>) F(>=)
template <int Mod = 1000000007>
class ModInt {
public:
ModInt() : n_(0) {}
ModInt(long long n) : n_(n % Mod) {
if (n_ < 0) {
// In C++, (-n)%m == -(n%m).
n_ += Mod;
}
}
ModInt& operator+=(const ModInt& m) {
n_ += m.n_;
if (n_ >= Mod) {
n_ -= Mod;
}
return *this;
}
ModInt& operator++() { return (*this) += 1; }
ModInt& operator-=(const ModInt& m) {
n_ -= m.n_;
if (n_ < 0) {
n_ += Mod;
}
return *this;
}
ModInt& operator--() { return (*this) -= 1; }
ModInt& operator*=(const ModInt& m) {
n_ *= m.n_;
n_ %= Mod;
return *this;
}
ModInt& operator/=(const ModInt& m) {
*this *= m.Inv();
return *this;
}
#define DEFINE(op) \
ModInt operator op(const ModInt& m) const { return ModInt(*this) op## = m; }
BIN_OPS(DEFINE)
#undef DEFINE
#define DEFINE(op) \
bool operator op(const ModInt& m) const { return n_ op m.n_; }
CMP_OPS(DEFINE)
#undef DEFINE
ModInt operator-() const { return ModInt(-n_); }
ModInt Pow(int n) const {
if (n < 0) {
return Inv().Pow(-n);
}
// a * b ^ n = answer.
ModInt a = 1, b = *this;
while (n != 0) {
if (n & 1) {
a *= b;
}
n /= 2;
b *= b;
}
return a;
}
ModInt Inv() const {
// Compute the inverse based on Fermat's little theorem. Note that this only
// works when n_ and Mod are relatively prime. The theorem says that
// n_^(Mod-1) = 1 (mod Mod). So we can compute n_^(Mod-2).
return Pow(Mod - 2);
}
long long value() const { return n_; }
static ModInt Fact(int n) {
for (int i = fact_.size(); i <= n; ++i) {
fact_.push_back(i == 0 ? 1 : fact_.back() * i);
}
return fact_[n];
}
static ModInt Comb(int n, int k) { return Perm(n, k) / Fact(k); }
static ModInt CombSlow(int n, int k) { return PermSlow(n, k) / Fact(k); }
static ModInt Perm(int n, int k) {
#if DEBUG
assert(n <= 1000000 &&
"n is too large. If k is small, consider using PermSlow.");
#endif
return Fact(n) / Fact(n - k);
}
static ModInt PermSlow(int n, int k) {
ModInt p = 1;
for (int i = 0; i < k; ++i) {
p *= (n - i);
}
return p;
}
private:
long long n_;
inline static std::vector<ModInt> fact_;
};
#define DEFINE(op) \
template <int Mod, typename T> \
ModInt<Mod> operator op(const T& t, const ModInt<Mod>& m) { \
return ModInt<Mod>(t) op m; \
}
BIN_OPS(DEFINE)
CMP_OPS(DEFINE)
#undef DEFINE
template <int Mod>
std::ostream& operator<<(std::ostream& out, const ModInt<Mod>& m) {
out << m.value();
return out;
}
namespace pclib {
namespace internal {
template <typename T, typename U>
class DP {
using Edge = typename BidirectedGraph<U>::Edge;
struct Weight {
Edge* edge;
T result;
};
using MetaEdge = typename BidirectedGraph<Weight>::Edge;
public:
DP(const BidirectedGraph<U>& graph, std::function<T(T, T)> op2,
std::function<T(const Edge&, T)> op1, T identity = T())
: graph_(graph.NumVertices()), op2_(op2), op1_(op1), identity_(identity) {
for (int i = 0; i < graph.NumVertices(); ++i) {
for (const auto& e : graph.Edges(i)) {
if (e->from > e->to) continue;
auto [f, b] = graph_.AddEdge(e->from, e->to);
f.weight.edge = e.get();
b.weight.edge = e->back;
}
}
}
void Dfs(int root) {
// Use a stack to avoid potential stack overflows.
std::stack<std::tuple<MetaEdge*, bool>> s;
s.emplace(nullptr, true);
while (!s.empty()) {
auto [in_edge, enter] = s.top();
s.pop();
int node = in_edge ? in_edge->to : root;
if (enter) {
s.emplace(in_edge, false);
for (const auto& e : graph_.Edges(node)) {
if (e->back != in_edge) {
s.emplace(e.get(), true);
}
}
} else {
T t = identity_;
for (const auto& e : graph_.Edges(node)) {
if (e->back != in_edge) {
t = op2_(t, e->weight.result);
}
}
if (in_edge) {
in_edge->weight.result = op1_(*in_edge->weight.edge, t);
}
}
}
}
std::vector<T> Rerooting(int root) {
std::vector<T> result(graph_.NumVertices());
std::stack<std::tuple<const MetaEdge*, T>> s;
s.emplace(nullptr, identity_);
while (!s.empty()) {
auto [in_edge, in_result] = s.top();
s.pop();
if (in_edge) {
in_edge->back->weight.result = in_result;
}
int node = in_edge ? in_edge->to : root;
const auto& edges = graph_.Edges(node);
// lower[i] = op2_(dp[i - 1], op2_(dp[i - 2], ...))
std::vector<T> lower(edges.size() + 1);
lower[0] = identity_;
for (std::size_t i = 0; i < edges.size(); ++i) {
lower[i + 1] = op2_(lower[i], edges[i]->weight.result);
}
// higher[i] = op2_(dp[i], op2_(dp[i + 1], ...))
std::vector<T> higher(edges.size() + 1);
higher[edges.size()] = identity_;
for (std::size_t i = edges.size() - 1; i < edges.size(); --i) {
higher[i] = op2_(higher[i + 1], edges[i]->weight.result);
}
result[node] = higher[0];
for (std::size_t i = 0; i < edges.size(); ++i) {
if (const auto& e = edges[i]; e->back != in_edge) {
s.emplace(e.get(),
op1_(*e->back->weight.edge, op2_(lower[i], higher[i + 1])));
}
}
}
return result;
}
BidirectedGraph<Weight> graph_;
const std::function<T(T, T)> op2_;
const std::function<T(const Edge&, T)> op1_;
const T identity_;
};
} // namespace internal
} // namespace pclib
template <typename T, typename U>
std::vector<T> Rerooting(
const BidirectedGraph<U>& graph, std::function<T(T, T)> op2,
std::function<T(const typename BidirectedGraph<U>::Edge&, T)> op1,
T identity = T()) {
pclib::internal::DP dp(graph, op2, op1, identity);
dp.Dfs(0);
return dp.Rerooting(0);
}
void Main() {
ints(n);
BidirectedGraph<int> g(n);
rep(n - 1) {
ints(a, b);
g.AddEdge(a - 1, b - 1);
}
// Tree: 1 -> 2 -> 3
//
// N3 = {0} = ID
// E2->3 = {0, 1} = {0} + inc({0}) = f(ID)
// N2 = {0, 1} = {0, 1} x ID
// E1->2 = {0, 0, 1, 2} = {0, 0} + inc({0, 1})
// N1 = {0, 0, 1, 2}
//
// Tree: 3 <- 1 -> 2
//
// N2 = {0}
// N3 = {0}
// E1-2 = {0, 1} = {0} + inc({0})
// E1-3 = {0, 1} = {0} + inc({0})
// N1 = {0, 1, 1, 2} = {0, 1} x {0, 1}
using mint = ModInt<>;
struct DP {
mint sqsum, sum, cnt;
};
auto f = [](DP x) -> DP {
return {x.sqsum + 2 * x.sum + x.cnt, x.sum + x.cnt, x.cnt * 2};
};
V<DP> res = Rerooting<DP, int>(
g,
[](DP a, DP b) -> DP {
return {a.sqsum * b.cnt + 2 * a.sum * b.sum + b.sqsum * a.cnt,
a.sum * b.cnt + b.sum * a.cnt, a.cnt * b.cnt};
},
[&](const auto&, DP x) -> DP { return f(x); }, {0, 0, 1});
mint ans = 0;
each(r, res) ans += f(r).sqsum;
wt(ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0