結果
問題 | No.1124 Earthquake Safety |
ユーザー |
|
提出日時 | 2021-01-09 11:36:25 |
言語 | C++17(clang) (17.0.6 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 902 ms / 3,000 ms |
コード長 | 14,050 bytes |
コンパイル時間 | 3,895 ms |
コンパイル使用メモリ | 173,440 KB |
実行使用メモリ | 137,060 KB |
最終ジャッジ日時 | 2024-11-17 13:53:38 |
合計ジャッジ時間 | 38,045 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 58 |
コンパイルメッセージ
main.cpp:225:9: warning: #pragma once in main file [-Wpragma-once-outside-header] 225 | #pragma once | ^ 1 warning generated.
ソースコード
#include <bits/stdc++.h>#include <boost/hana/functional/fix.hpp>template <typename T, typename = void>struct is_dereferenceable : std::false_type {};template <typename T>struct is_dereferenceable<T, std::void_t<decltype(*std::declval<T>())>>: std::true_type {};template <typename T, typename = void>struct is_iterable : std::false_type {};template <typename T>struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),decltype(std::end(std::declval<T>()))>>: std::true_type {};template <typename T, typename = void>struct is_applicable : std::false_type {};template <typename T>struct is_applicable<T, std::void_t<decltype(std::tuple_size<T>::value)>>: std::true_type {};template <typename T, typename... Ts>void debug(const T& value, const Ts&... args);template <typename T>void debug(const T& v) {if constexpr (is_dereferenceable<T>::value) {std::cerr << "{";if (v) {debug(*v);} else {std::cerr << "nil";}std::cerr << "}";} else if constexpr (is_iterable<T>::value &&!std::is_same<T, std::string>::value) {std::cerr << "{";for (auto it = std::begin(v); it != std::end(v); ++it) {if (it != std::begin(v)) std::cerr << ", ";debug(*it);}std::cerr << "}";} else if constexpr (is_applicable<T>::value) {std::cerr << "{";std::apply([](const auto&... args) { debug(args...); }, v);std::cerr << "}";} else {std::cerr << v;}}template <typename T, typename... Ts>void debug(const T& value, const Ts&... args) {debug(value);std::cerr << ", ";debug(args...);}#if DEBUG#define dbg(...) \do { \cerr << #__VA_ARGS__ << ": "; \debug(__VA_ARGS__); \cerr << " (L" << __LINE__ << ")\n"; \} while (0)#else#define dbg(...)#endifvoid read_from_cin() {}template <typename T, typename... Ts>void read_from_cin(T& value, Ts&... args) {std::cin >> value;read_from_cin(args...);}#define rd(type, ...) \type __VA_ARGS__; \read_from_cin(__VA_ARGS__);#define ints(...) rd(int, __VA_ARGS__);#define strings(...) rd(string, __VA_ARGS__);template <typename T>void write_to_cout(const T& value) {if constexpr (std::is_same<T, bool>::value) {std::cout << (value ? "Yes" : "No");} else {std::cout << value;}}template <typename T, typename... Ts>void write_to_cout(const T& value, const Ts&... args) {write_to_cout(value);std::cout << ' ';write_to_cout(args...);}#define wt(...) \do { \write_to_cout(__VA_ARGS__); \cout << '\n'; \} while (0)#define all(x) (x).begin(), (x).end()#define eb(...) emplace_back(__VA_ARGS__)#define pb(...) push_back(__VA_ARGS__)#define dispatch(_1, _2, _3, name, ...) name#define as_i64(x) \( \[] { \static_assert( \std::is_integral< \typename std::remove_reference<decltype(x)>::type>::value, \"rep macro supports std integral types only"); \}, \static_cast<std::int64_t>(x))#define rep3(i, a, b) for (std::int64_t i = as_i64(a); i < as_i64(b); ++i)#define rep2(i, n) rep3(i, 0, n)#define rep1(n) rep2(_loop_variable_, n)#define rep(...) dispatch(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)#define rrep3(i, a, b) for (std::int64_t i = as_i64(b) - 1; i >= as_i64(a); --i)#define rrep2(i, n) rrep3(i, 0, n)#define rrep1(n) rrep2(_loop_variable_, n)#define rrep(...) dispatch(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__)#define each3(k, v, c) for (auto&& [k, v] : c)#define each2(e, c) for (auto&& e : c)#define each(...) dispatch(__VA_ARGS__, each3, each2)(__VA_ARGS__)template <typename T>std::istream& operator>>(std::istream& is, std::vector<T>& v) {for (T& vi : v) is >> vi;return is;}template <typename T, typename U>std::istream& operator>>(std::istream& is, std::pair<T, U>& p) {is >> p.first >> p.second;return is;}template <typename T, typename U>bool chmax(T& a, U b) {if (a < b) {a = b;return true;}return false;}template <typename T, typename U>bool chmin(T& a, U b) {if (a > b) {a = b;return true;}return false;}template <typename T, typename U>auto max(T a, U b) {return a > b ? a : b;}template <typename T, typename U>auto min(T a, U b) {return a < b ? a : b;}template <typename T>int sz(const T& v) {return v.size();}template <typename T>int popcount(T i) {return std::bitset<std::numeric_limits<T>::digits>(i).count();}template <typename T>bool hasbit(T s, int i) {return std::bitset<std::numeric_limits<T>::digits>(s)[i];}template <typename T, typename U>auto div_ceil(T n, U d) {return (n + d - 1) / d;}template <typename T>bool even(T x) {return x % 2 == 0;}const std::int64_t big = std::numeric_limits<std::int64_t>::max() / 10;using i64 = std::int64_t;using i32 = std::int32_t;template <typename T>using low_priority_queue =std::priority_queue<T, std::vector<T>, std::greater<T>>;template <typename T>using V = std::vector<T>;template <typename T>using VV = V<V<T>>;void Main();int main() {std::ios_base::sync_with_stdio(false);std::cin.tie(NULL);std::cout << std::fixed << std::setprecision(20);Main();return 0;}const auto& Fix = boost::hana::fix;using namespace std;#define int i64#pragma oncetemplate <typename T>class BidirectedGraph {public:struct Edge {int from, to;T weight;Edge* back = nullptr;Edge(int from, int to, T weight = T()): from(from), to(to), weight(weight) {}};BidirectedGraph(int n) : edges_(n) {}std::pair<Edge&, Edge&> AddEdge(int from, int to, T weight = T()) {Edge& forward = AddDirectedEdge(from, to, weight);Edge& back = AddDirectedEdge(to, from, weight);forward.back = &back;back.back = &forward;return {forward, back};}const std::vector<std::unique_ptr<Edge>>& Edges(int from) const {return edges_[from];}std::vector<std::unique_ptr<Edge>>& MutableEdges(int from) {return edges_[from];}int NumVertices() const { return edges_.size(); }private:Edge& AddDirectedEdge(int from, int to, T weight = T()) {edges_[from].push_back(std::make_unique<Edge>(from, to, weight));return *edges_[from].back();}std::vector<std::vector<std::unique_ptr<Edge>>> edges_;};#define BIN_OPS(F) F(+) F(-) F(*) F(/)#define CMP_OPS(F) F(!=) F(<) F(<=) F(==) F(>) F(>=)template <int Mod = 1000000007>class ModInt {public:ModInt() : n_(0) {}ModInt(long long n) : n_(n % Mod) {if (n_ < 0) {// In C++, (-n)%m == -(n%m).n_ += Mod;}}ModInt& operator+=(const ModInt& m) {n_ += m.n_;if (n_ >= Mod) {n_ -= Mod;}return *this;}ModInt& operator++() { return (*this) += 1; }ModInt& operator-=(const ModInt& m) {n_ -= m.n_;if (n_ < 0) {n_ += Mod;}return *this;}ModInt& operator--() { return (*this) -= 1; }ModInt& operator*=(const ModInt& m) {n_ *= m.n_;n_ %= Mod;return *this;}ModInt& operator/=(const ModInt& m) {*this *= m.Inv();return *this;}#define DEFINE(op) \ModInt operator op(const ModInt& m) const { return ModInt(*this) op## = m; }BIN_OPS(DEFINE)#undef DEFINE#define DEFINE(op) \bool operator op(const ModInt& m) const { return n_ op m.n_; }CMP_OPS(DEFINE)#undef DEFINEModInt operator-() const { return ModInt(-n_); }ModInt Pow(int n) const {if (n < 0) {return Inv().Pow(-n);}// a * b ^ n = answer.ModInt a = 1, b = *this;while (n != 0) {if (n & 1) {a *= b;}n /= 2;b *= b;}return a;}ModInt Inv() const {// Compute the inverse based on Fermat's little theorem. Note that this only// works when n_ and Mod are relatively prime. The theorem says that// n_^(Mod-1) = 1 (mod Mod). So we can compute n_^(Mod-2).return Pow(Mod - 2);}long long value() const { return n_; }static ModInt Fact(int n) {for (int i = fact_.size(); i <= n; ++i) {fact_.push_back(i == 0 ? 1 : fact_.back() * i);}return fact_[n];}static ModInt Comb(int n, int k) { return Perm(n, k) / Fact(k); }static ModInt CombSlow(int n, int k) { return PermSlow(n, k) / Fact(k); }static ModInt Perm(int n, int k) {#if DEBUGassert(n <= 1000000 &&"n is too large. If k is small, consider using PermSlow.");#endifreturn Fact(n) / Fact(n - k);}static ModInt PermSlow(int n, int k) {ModInt p = 1;for (int i = 0; i < k; ++i) {p *= (n - i);}return p;}private:long long n_;inline static std::vector<ModInt> fact_;};#define DEFINE(op) \template <int Mod, typename T> \ModInt<Mod> operator op(const T& t, const ModInt<Mod>& m) { \return ModInt<Mod>(t) op m; \}BIN_OPS(DEFINE)CMP_OPS(DEFINE)#undef DEFINEtemplate <int Mod>std::ostream& operator<<(std::ostream& out, const ModInt<Mod>& m) {out << m.value();return out;}namespace pclib {namespace internal {template <typename T, typename U>class DP {using Edge = typename BidirectedGraph<U>::Edge;struct Weight {Edge* edge;T result;};using MetaEdge = typename BidirectedGraph<Weight>::Edge;public:DP(const BidirectedGraph<U>& graph, std::function<T(T, T)> op2,std::function<T(const Edge&, T)> op1, T identity = T()): graph_(graph.NumVertices()), op2_(op2), op1_(op1), identity_(identity) {for (int i = 0; i < graph.NumVertices(); ++i) {for (const auto& e : graph.Edges(i)) {if (e->from > e->to) continue;auto [f, b] = graph_.AddEdge(e->from, e->to);f.weight.edge = e.get();b.weight.edge = e->back;}}}void Dfs(int root) {// Use a stack to avoid potential stack overflows.std::stack<std::tuple<MetaEdge*, bool>> s;s.emplace(nullptr, true);while (!s.empty()) {auto [in_edge, enter] = s.top();s.pop();int node = in_edge ? in_edge->to : root;if (enter) {s.emplace(in_edge, false);for (const auto& e : graph_.Edges(node)) {if (e->back != in_edge) {s.emplace(e.get(), true);}}} else {T t = identity_;for (const auto& e : graph_.Edges(node)) {if (e->back != in_edge) {t = op2_(t, e->weight.result);}}if (in_edge) {in_edge->weight.result = op1_(*in_edge->weight.edge, t);}}}}std::vector<T> Rerooting(int root) {std::vector<T> result(graph_.NumVertices());std::stack<std::tuple<const MetaEdge*, T>> s;s.emplace(nullptr, identity_);while (!s.empty()) {auto [in_edge, in_result] = s.top();s.pop();if (in_edge) {in_edge->back->weight.result = in_result;}int node = in_edge ? in_edge->to : root;const auto& edges = graph_.Edges(node);// lower[i] = op2_(dp[i - 1], op2_(dp[i - 2], ...))std::vector<T> lower(edges.size() + 1);lower[0] = identity_;for (std::size_t i = 0; i < edges.size(); ++i) {lower[i + 1] = op2_(lower[i], edges[i]->weight.result);}// higher[i] = op2_(dp[i], op2_(dp[i + 1], ...))std::vector<T> higher(edges.size() + 1);higher[edges.size()] = identity_;for (std::size_t i = edges.size() - 1; i < edges.size(); --i) {higher[i] = op2_(higher[i + 1], edges[i]->weight.result);}result[node] = higher[0];for (std::size_t i = 0; i < edges.size(); ++i) {if (const auto& e = edges[i]; e->back != in_edge) {s.emplace(e.get(),op1_(*e->back->weight.edge, op2_(lower[i], higher[i + 1])));}}}return result;}BidirectedGraph<Weight> graph_;const std::function<T(T, T)> op2_;const std::function<T(const Edge&, T)> op1_;const T identity_;};} // namespace internal} // namespace pclibtemplate <typename T, typename U>std::vector<T> Rerooting(const BidirectedGraph<U>& graph, std::function<T(T, T)> op2,std::function<T(const typename BidirectedGraph<U>::Edge&, T)> op1,T identity = T()) {pclib::internal::DP dp(graph, op2, op1, identity);dp.Dfs(0);return dp.Rerooting(0);}void Main() {ints(n);BidirectedGraph<int> g(n);rep(n - 1) {ints(a, b);g.AddEdge(a - 1, b - 1);}// Tree: 1 -> 2 -> 3//// N3 = {0} = ID// E2->3 = {0, 1} = {0} + inc({0}) = f(ID)// N2 = {0, 1} = {0, 1} x ID// E1->2 = {0, 0, 1, 2} = {0, 0} + inc({0, 1})// N1 = {0, 0, 1, 2}//// Tree: 3 <- 1 -> 2//// N2 = {0}// N3 = {0}// E1-2 = {0, 1} = {0} + inc({0})// E1-3 = {0, 1} = {0} + inc({0})// N1 = {0, 1, 1, 2} = {0, 1} x {0, 1}using mint = ModInt<>;struct DP {mint sqsum, sum, cnt;};auto f = [](DP x) -> DP {return {x.sqsum + 2 * x.sum + x.cnt, x.sum + x.cnt, x.cnt * 2};};V<DP> res = Rerooting<DP, int>(g,[](DP a, DP b) -> DP {return {a.sqsum * b.cnt + 2 * a.sum * b.sum + b.sqsum * a.cnt,a.sum * b.cnt + b.sum * a.cnt, a.cnt * b.cnt};},[&](const auto&, DP x) -> DP { return f(x); }, {0, 0, 1});mint ans = 0;each(r, res) ans += f(r).sqsum;wt(ans);}