結果
問題 | No.1175 Simultaneous Equations |
ユーザー | tkmst201 |
提出日時 | 2021-01-12 18:21:20 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,071 bytes |
コンパイル時間 | 2,295 ms |
コンパイル使用メモリ | 209,728 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-21 09:54:45 |
合計ジャッジ時間 | 2,647 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) begin(v),end(v) template<typename A, typename B> inline bool chmax(A & a, const B & b) { if (a < b) { a = b; return true; } return false; } template<typename A, typename B> inline bool chmin(A & a, const B & b) { if (a > b) { a = b; return true; } return false; } using ll = long long; using pii = pair<int, int>; constexpr ll INF = 1ll<<30; constexpr ll longINF = 1ll<<60; constexpr ll MOD = 1000000007; constexpr bool debug = false; //---------------------------------// struct Matrix { public: using value_type = double; using size_type = std::size_t; Matrix() {} Matrix(size_type h, size_type w, const value_type & x = 0) : h(h), w(w), val(h, std::vector<value_type>(w, x)) { assert(h > 0 && w > 0); } Matrix(std::vector<std::vector<value_type>> val) : h(val.size()), w(val.size() ? val[0].size() : 0), val(val) { assert(h > 0 && w > 0); for (size_type i = 1; i < h; ++i) assert(val[i].size() == w); } Matrix(std::initializer_list<std::vector<value_type>> init) : val(init.begin(), init.end()) { h = val.size(); w = val.size() ? val[0].size() : 0; assert(h > 0 && w > 0); for (size_type i = 1; i < h; ++i) assert(val[i].size() == w); } std::vector<value_type> & operator [](size_type i) noexcept { return val[i]; } const std::vector<value_type> & operator [](size_type i) const noexcept { return val[i]; }; value_type & operator ()(size_type i, size_type j) noexcept { return val[i][j]; }; const value_type & operator ()(size_type i, size_type j) const noexcept { return val[i][j]; } value_type & at(size_type i, size_type j) { assert(i < h && j < w); return val[i][j]; } const value_type & at(size_type i, size_type j) const { assert(i < h & j < w); return val[i][j]; } bool empty() const { return !(h || w); } std::pair<size_type, size_type> type() const { return std::make_pair(h, w); } bool match_type(const Matrix & rhs) const noexcept { return h == rhs.h && w == rhs.w; } bool is_square() const { return h == w; } const std::vector<std::vector<value_type>> & get() const noexcept { return val; } bool operator ==(const Matrix & rhs) const noexcept { return match_type(rhs) && val == rhs.val; } bool operator !=(const Matrix & rhs) const noexcept { return !(*this == rhs); } Matrix operator +() const { return Matrix(*this); } Matrix operator -() const { return Matrix(h, w) - Matrix(*this); } Matrix operator +(const Matrix & rhs) const { return Matrix(*this) += rhs; } Matrix operator -(const Matrix & rhs) const { return Matrix(*this) -= rhs; } Matrix operator *(const Matrix & rhs) const { assert(w == rhs.h); Matrix res(h, rhs.w); for (size_type i = 0; i < h; ++i) for (size_type j = 0; j < rhs.w; ++j) for (size_type k = 0; k < w; ++k) res.val[i][j] += val[i][k] * rhs.val[k][j]; return res; } Matrix operator /(const Matrix & rhs) const { return Matrix(*this) /= rhs; } friend Matrix operator *(const value_type & lhs, const Matrix & rhs) { Matrix res(rhs.val); for (size_type i = 0; i < res.h; ++i) for (size_type j = 0; j < res.w; ++j) res.val[i][j] = lhs * res.val[i][j]; return res; } Matrix operator *(const value_type & rhs) const { Matrix res(val); for (size_type i = 0; i < h; ++i) for (size_type j = 0; j < w; ++j) res.val[i][j] *= rhs; return res; } Matrix operator /(const value_type & rhs) const { Matrix res(val); for (size_type i = 0; i < h; ++i) for (size_type j = 0; j < w; ++j) res.val[i][j] /= rhs; return res; } Matrix & operator +=(const Matrix & rhs) { assert(match_type(rhs)); for (size_type i = 0; i < h; ++i) for (size_type j = 0; j < w; ++j) val[i][j] += rhs.val[i][j]; return *this; } Matrix & operator -=(const Matrix & rhs) { assert(match_type(rhs)); for (size_type i = 0; i < h; ++i) for(size_type j = 0; j < w; ++j) val[i][j] -= rhs.val[i][j]; return *this; } Matrix & operator *=(const Matrix & rhs) { *this = *this * rhs; return *this; } Matrix & operator /=(const Matrix & rhs) { *this *= rhs.inverse(); return *this; } Matrix pow(long long n) const { Matrix res = identity(h), x = *this; if (n < 0) { x = x.inverse(); n = -n; } while (n) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } Matrix trans() const { Matrix res(w, h); for (size_type i = 0; i < h; ++i) for (size_type j = 0; j < w; ++j) res.val[j][i] = val[i][j]; return res; } Matrix inverse() const { assert(is_square()); Matrix aug_mat = this->hstack(identity(h)); if (aug_mat.gauss_jordan().first != h) return Matrix(); return aug_mat.submat(0, w, h, 2 * w); } Matrix vstack(const Matrix & A) const { assert(w == A.w); Matrix res(h + A.h, w); std::copy(val.begin(), val.end(), res.val.begin()); std::copy(A.val.begin(), A.val.end(), res.val.begin() + h); return res; } Matrix hstack(const Matrix & A) const { assert(h == A.h); Matrix res(h, w + A.w); for (int i = 0; i < h; ++i) { std::copy(val[i].begin(), val[i].end(), res.val[i].begin()); std::copy(A.val[i].begin(), A.val[i].end(), res.val[i].begin() + w); } return res; } Matrix submat(size_type i1, size_type j1, size_type i2, size_type j2) const { assert(i1 < i2 && j1 < j2 && i2 <= h && j2 <= w); Matrix res(i2 - i1, j2 - j1); for (size_type i = 0; i < i2 - i1; ++i) std::copy(val[i + i1].begin() + j1, val[i + i1].begin() + j2, res.val[i].begin()); return res; } static Matrix identity(size_type n) { Matrix res(n, n); for (size_type i = 0; i < n; ++i) res(i, i) = 1; return res; } std::pair<size_type, value_type> gauss_jordan(size_type colnum = -1) { if (colnum == -1) colnum = w; size_type rank = 0; value_type det = 1; for (size_type k = 0; k < colnum; ++k) { size_type pivot = -1; value_type mx = EPS; for (size_type i = rank; i < h; ++i) { value_type cur = std::abs(val[i][k]); if (cur > mx) { mx = cur; pivot = i; } } if (pivot == -1) continue; if (pivot != rank) { det *= -1; std::swap(val[rank], val[pivot]); } value_type div = val[rank][k]; det *= div; for (size_type j = k; j < w; ++j) val[rank][j] /= div; for (size_type i = 0; i < h; ++i) if (i != rank) { for (size_type j = k + 1; j < w; ++j) val[i][j] -= val[rank][j] * val[i][k]; val[i][k] = 0; } ++rank; } if (!is_square() || rank != h) det = 0; return {rank, det} ; } friend std::ostream & operator <<(std::ostream & os, const Matrix & rhs) { os << "type = (" << rhs.h << "," << rhs.w << ") [\n"; for (size_type i = 0; i < rhs.h; ++i) for (size_type j = 0; j < rhs.w; ++j) os << (j == 0 ? " " : "") << rhs.val[i][j] << (j + 1 == rhs.w ? '\n' : ' '); return os << "]"; } private: static constexpr value_type EPS = 1e-6; size_type h, w; std::vector<std::vector<value_type>> val; }; int main() { Matrix mat(2, 3); REP(i, 2) REP(j, 3) cin >> mat[i][j]; mat.gauss_jordan(); printf("%.15f, %.15f\n", mat[0][2], mat[1][2]); }