結果
| 問題 | No.8046 yukicoderの過去問 |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-01-13 13:55:20 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 1,560 ms / 2,000 ms |
| コード長 | 38,423 bytes |
| 記録 | |
| コンパイル時間 | 3,197 ms |
| コンパイル使用メモリ | 234,632 KB |
| 最終ジャッジ日時 | 2025-01-17 17:15:43 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
/*
#include <atcoder/all>
using namespace atcoder;
*/
/*
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using bll = boost::multiprecision::cpp_int;
using bdouble = boost::multiprecision::number<boost::multiprecision::cpp_dec_float<100>>;
using namespace boost::multiprecision;
*/
#if defined(LOCAL_TEST) || defined(LOCAL_DEV)
#define BOOST_STACKTRACE_USE_ADDR2LINE
#define BOOST_STACKTRACE_ADDR2LINE_LOCATION /usr/local/opt/binutils/bin/addr2line
#define _GNU_SOURCE 1
#include <boost/stacktrace.hpp>
#endif
#ifdef LOCAL_TEST
namespace std {
template<typename T> class dvector : public std::vector<T> {
public:
dvector() : std::vector<T>() {}
explicit dvector(size_t n, const T& value = T()) : std::vector<T>(n, value) {}
dvector(const std::vector<T>& v) : std::vector<T>(v) {}
dvector(const std::initializer_list<T> il) : std::vector<T>(il) {}
dvector(const std::string::iterator first, const std::string::iterator last) : std::vector<T>(first, last) {}
dvector(const typename std::vector<T>::iterator first, const typename std::vector<T>::iterator last) : std::vector<T>(first, last) {}
dvector(const typename std::vector<T>::reverse_iterator first, const typename std::vector<T>::reverse_iterator last) : std::vector<T>(first, last) {}
dvector(const typename std::vector<T>::const_iterator first, const typename std::vector<T>::const_iterator last) : std::vector<T>(first, last) {}
dvector(const typename std::vector<T>::const_reverse_iterator first, const typename std::vector<T>::const_reverse_iterator last) : std::vector<T>(first, last) {}
T& operator[](size_t n) {
if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n);
}
const T& operator[](size_t n) const {
if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n);
}
};
}
class dbool {
private:
bool boolvalue;
public:
dbool() : boolvalue(false) {}
dbool(bool b) : boolvalue(b) {}
operator bool&() { return boolvalue; }
operator const bool&() const { return boolvalue; }
};
#define vector dvector
#define bool dbool
class SIGFPE_exception : std::exception {};
class SIGSEGV_exception : std::exception {};
void catch_SIGFPE([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGFPE_exception(); }
void catch_SIGSEGV([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGSEGV_exception(); }
signed convertedmain();
signed main() { signal(SIGFPE, catch_SIGFPE); signal(SIGSEGV, catch_SIGSEGV); return convertedmain(); }
#define main() convertedmain()
#endif
#ifdef LOCAL_DEV
template<typename T1, typename T2> std::ostream& operator<<(std::ostream& s, const std::pair<T1, T2>& p) {
return s << "(" << p.first << ", " << p.second << ")"; }
template <typename T, size_t N> std::ostream& operator<<(std::ostream& s, const std::array<T, N>& a) {
s << "{ "; for (size_t i = 0; i < N; ++i){ s << a[i] << "\t"; } s << "}"; return s; }
template<typename T> std::ostream& operator<<(std::ostream& s, const std::set<T>& se) {
s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; }
template<typename T> std::ostream& operator<<(std::ostream& s, const std::multiset<T>& se) {
s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; }
template<typename T1, typename T2> std::ostream& operator<<(std::ostream& s, const std::map<T1, T2>& m) {
s << "{\n"; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << "\n"; } s << "}"; return s; }
template<typename T> std::ostream& operator<<(std::ostream& s, const std::deque<T>& v) {
for (size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; }
template<typename T> std::ostream& operator<<(std::ostream& s, const std::vector<T>& v) {
for (size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; }
template<typename T> std::ostream& operator<<(std::ostream& s, const std::vector<std::vector<T>>& vv) {
s << "\\\n"; for (size_t i = 0; i < vv.size(); ++i){ s << vv[i] << "\n"; } return s; }
void debug_impl() { std::cerr << '\n'; }
template<typename Head, typename... Tail> void debug_impl(Head head, Tail... tail) { std::cerr << " " << head << (sizeof...(tail) ? "," : ""); debug_impl(tail...); }
#define debug(...) do { std::cerr << ":" << __LINE__ << " (" << #__VA_ARGS__ << ") ="; debug_impl(__VA_ARGS__); } while (false)
constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return local; }
#else
#define debug(...) do {} while (false)
constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return prod; }
#endif
//#define int long long
using ll = long long;
//INT_MAX = (1<<31)-1 = 2147483647, INT64_MAX = (1LL<<63)-1 = 9223372036854775807
constexpr ll INF = numeric_limits<ll>::max() == INT_MAX ? (ll)1e9 + 7 : (ll)1e18;
constexpr ll MOD = (ll)1e9 + 7; //primitive root = 5
//constexpr ll MOD = 998244353; //primitive root = 3
constexpr double EPS = 1e-9;
constexpr ll dx[4] = {1, 0, -1, 0};
constexpr ll dy[4] = {0, 1, 0, -1};
constexpr ll dx8[8] = {1, 0, -1, 0, 1, 1, -1, -1};
constexpr ll dy8[8] = {0, 1, 0, -1, 1, -1, 1, -1};
#define rep(i, n) for(ll i=0, i##_length=(n); i< i##_length; ++i)
#define repeq(i, n) for(ll i=1, i##_length=(n); i<=i##_length; ++i)
#define rrep(i, n) for(ll i=(n)-1; i>=0; --i)
#define rrepeq(i, n) for(ll i=(n) ; i>=1; --i)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
void p() { std::cout << '\n'; }
template<typename Head, typename... Tail> void p(Head head, Tail... tail) { std::cout << head << (sizeof...(tail) ? " " : ""); p(tail...); }
template<typename T> inline void pv(std::vector<T>& v) { for(ll i=0, N=v.size(); i<N; i++) std::cout << v[i] << " \n"[i==N-1]; }
template<typename T> inline bool chmax(T& a, T b) { return a < b && (a = b, true); }
template<typename T> inline bool chmin(T& a, T b) { return a > b && (a = b, true); }
template<typename T> inline void uniq(std::vector<T>& v) { v.erase(std::unique(v.begin(), v.end()), v.end()); }
template<typename T> inline ll sz(T& v) { return v.size(); }
/*-----8<-----template-----8<-----*/
map<ll,ll> inv_cache;
struct Modint{
unsigned long long num = 0;
constexpr Modint() noexcept {}
//constexpr Modint(const Modint &x) noexcept : num(x.num){}
inline constexpr operator ll() const noexcept { return num; }
inline constexpr Modint& operator+=(Modint x) noexcept { num += x.num; if(num >= MOD) num -= MOD; return *this; }
inline constexpr Modint& operator++() noexcept { if(num == MOD - 1) num = 0; else num++; return *this; }
inline constexpr Modint operator++(int) noexcept { Modint ans(*this); operator++(); return ans; }
inline constexpr Modint operator-() const noexcept { return Modint(0) -= *this; }
inline constexpr Modint& operator-=(Modint x) noexcept { if(num < x.num) num += MOD; num -= x.num; return *this; }
inline constexpr Modint& operator--() noexcept { if(num == 0) num = MOD - 1; else num--; return *this; }
inline constexpr Modint operator--(int) noexcept { Modint ans(*this); operator--(); return ans; }
inline constexpr Modint& operator*=(Modint x) noexcept { num = (unsigned long long)(num) * x.num % MOD; return *this; }
inline Modint& operator/=(Modint x) noexcept { return operator*=(x.inv()); }
template<class T> constexpr Modint(T x) noexcept {
using U = typename conditional<sizeof(T) >= 4, T, int>::type;
U y = x; y %= U(MOD); if(y < 0) y += MOD; num = (unsigned long long)(y);
}
template<class T> inline constexpr Modint operator+(T x) const noexcept { return Modint(*this) += x; }
template<class T> inline constexpr Modint& operator+=(T x) noexcept { return operator+=(Modint(x)); }
template<class T> inline constexpr Modint operator-(T x) const noexcept { return Modint(*this) -= x; }
template<class T> inline constexpr Modint& operator-=(T x) noexcept { return operator-=(Modint(x)); }
template<class T> inline constexpr Modint operator*(T x) const noexcept { return Modint(*this) *= x; }
template<class T> inline constexpr Modint& operator*=(T x) noexcept { return operator*=(Modint(x)); }
template<class T> inline constexpr Modint operator/(T x) const noexcept { return Modint(*this) /= x; }
template<class T> inline constexpr Modint& operator/=(T x) noexcept { return operator/=(Modint(x)); }
inline Modint inv() const noexcept { return inv_cache.count(num) ? inv_cache[num] : inv_cache[num] = inv_calc(); }
inline constexpr ll inv_calc() const noexcept { ll x = 0, y = 0; extgcd(num, MOD, x, y); return x; }
static inline constexpr ll extgcd(ll a, ll b, ll &x, ll &y) noexcept { ll g = a; x = 1; y = 0; if(b){ g = extgcd(b, a % b, y, x); y -= a / b * x; } return g; }
inline constexpr Modint pow(ll x) const noexcept { Modint ans = 1, cnt = x>=0 ? *this : inv(); if(x<0) x = -x; while(x){ if(x & 1) ans *= cnt; cnt *= cnt; x /= 2; } return ans; }
static inline constexpr ll get_mod() { return MOD; }
};
std::istream& operator>>(std::istream& is, Modint& x){ ll a; is>>a; x = a; return is; }
inline constexpr Modint operator""_M(unsigned long long x) noexcept { return Modint(x); }
std::vector<Modint> fac(1, 1), inv(1, 1);
inline void reserve(size_t a){
if(fac.size() >= a) return;
if(a < fac.size() * 2) a = fac.size() * 2;
if(a >= MOD) a = MOD;
fac.reserve(a);
while(fac.size() < a) fac.push_back(fac.back() * Modint(fac.size()));
inv.resize(fac.size());
inv.back() = fac.back().inv();
for(ll i = inv.size() - 1; !inv[i - 1]; i--) inv[i - 1] = inv[i] * i;
}
inline Modint factorial(ll n){ if(n < 0) return 0; reserve(n + 1); return fac[n]; }
inline Modint nPk(ll n, ll r){
if(r < 0 || n < r) return 0;
if(n >> 24){ Modint ans = 1; for(ll i = 0; i < r; i++) ans *= n--; return ans; }
reserve(n + 1); return fac[n] * inv[n - r];
}
inline Modint nCk(ll n, ll r){ if(r < 0 || n < r) return 0; r = min(r, n - r); reserve(r + 1); return inv[r] * nPk(n, r); }
inline Modint nHk(ll n, ll r){ return nCk(n + r - 1, n - 1); } //n種類のものから重複を許してr個選ぶ=玉r個と仕切りn-1個
inline Modint catalan(ll n){ reserve(n * 2 + 1); return fac[n * 2] * inv[n] * inv[n + 1]; }
////
/*
template< typename T >
struct FormalPowerSeries : vector< T > {
using vector< T >::vector;
using P = FormalPowerSeries;
using MULT = function< vector< T >(P, P) >;
using FFT = function< void(P &) >;
using SQRT = function< T(T) >;
static MULT &get_mult() {
static MULT mult = nullptr;
return mult;
}
static void set_mult(MULT f) {
get_mult() = f;
}
static FFT &get_fft() {
static FFT fft = nullptr;
return fft;
}
static FFT &get_ifft() {
static FFT ifft = nullptr;
return ifft;
}
static void set_fft(FFT f, FFT g) {
get_fft() = f;
get_ifft() = g;
}
static SQRT &get_sqrt() {
static SQRT sqr = nullptr;
return sqr;
}
static void set_sqrt(SQRT sqr) {
get_sqrt() = sqr;
}
void shrink() {
while(this->size() && this->back() == T(0)) this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
P &operator+=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
shrink();
return *this;
}
P &operator-=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] -= r;
shrink();
return *this;
}
P &operator*=(const T &v) {
const int n = (int) this->size();
for(int k = 0; k < n; k++) (*this)[k] *= v;
return *this;
}
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
assert(get_mult() != nullptr);
auto ret = get_mult()(*this, r);
return *this = P(begin(ret), end(ret));
}
P &operator%=(const P &r) { return *this -= *this / r * r; }
P operator-() const {
P ret(this->size());
for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P dot(P r) const {
P ret(min(this->size(), r.size()));
for(int i = 0; i < ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
P pre(int sz) const { return P(begin(*this), begin(*this) + min((int) this->size(), sz)); }
P operator>>(int sz) const {
if((int)this->size() <= sz) return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1) ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
P diff() const {
const int n = (int) this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
P integral() const {
const int n = (int) this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
// F(0) must not be 0
P inv(int deg = -1) const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
if(get_fft() != nullptr) {
P ret(*this);
ret.resize(deg, T(0));
return ret.inv_fast();
}
P ret({T(1) / (*this)[0]});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
// F(0) must be 1
P log(int deg = -1) const {
assert((*this)[0] == 1);
const int n = (int) this->size();
if(deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
P sqrt(int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1) return {};
if(deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(deg - i / 2);
if(ret.empty()) return {};
ret = ret << (i / 2);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
P ret;
if(get_sqrt() == nullptr) {
assert((*this)[0] == T(1));
ret = {T(1)};
} else {
auto sqr = get_sqrt()((*this)[0]);
if(sqr * sqr != (*this)[0]) return {};
ret = {T(sqr)};
}
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
// F(0) must be 0
P exp(int deg = -1) const {
assert((*this)[0] == T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
if(get_fft() != nullptr) {
P ret(*this);
ret.resize(deg, T(0));
return ret.exp_rec();
}
P ret({T(1)});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
P online_convolution_exp(const P &conv_coeff) const {
const int n = (int) conv_coeff.size();
assert((n & (n - 1)) == 0);
vector< P > conv_ntt_coeff;
auto& fft = get_fft();
auto& ifft = get_ifft();
for(int i = n; i >= 1; i >>= 1) {
P g(conv_coeff.pre(i));
fft(g);
conv_ntt_coeff.emplace_back(g);
}
P conv_arg(n), conv_ret(n);
auto rec = [&](auto rec, int l, int r, int d) -> void {
if(r - l <= 16) {
for(int i = l; i < r; i++) {
T sum = 0;
for(int j = l; j < i; j++) sum += conv_arg[j] * conv_coeff[i - j];
conv_ret[i] += sum;
conv_arg[i] = i == 0 ? T(1) : conv_ret[i] / i;
}
} else {
int m = (l + r) / 2;
rec(rec, l, m, d + 1);
P pre(r - l);
for(int i = 0; i < m - l; i++) pre[i] = conv_arg[l + i];
fft(pre);
for(int i = 0; i < r - l; i++) pre[i] *= conv_ntt_coeff[d][i];
ifft(pre);
for(int i = 0; i < r - m; i++) conv_ret[m + i] += pre[m + i - l];
rec(rec, m, r, d + 1);
}
};
rec(rec, 0, n, 0);
return conv_arg;
}
P exp_rec() const {
assert((*this)[0] == T(0));
const int n = (int) this->size();
int m = 1;
while(m < n) m *= 2;
P conv_coeff(m);
for(int i = 1; i < n; i++) conv_coeff[i] = (*this)[i] * i;
return online_convolution_exp(conv_coeff).pre(n);
}
P inv_fast() const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
P res{T(1) / (*this)[0]};
for(int d = 1; d < n; d <<= 1) {
P f(2 * d), g(2 * d);
for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j];
for(int j = 0; j < d; j++) g[j] = res[j];
get_fft()(f);
get_fft()(g);
for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
get_ifft()(f);
for(int j = 0; j < d; j++) {
f[j] = 0;
f[j + d] = -f[j + d];
}
get_fft()(f);
for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
get_ifft()(f);
for(int j = 0; j < d; j++) f[j] = res[j];
res = f;
}
return res.pre(n);
}
P pow(int64_t k, int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
for(int i = 0; i < n; i++) {
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P ret = (((*this * rev) >> i).log() * k).exp() * (T((*this)[i]).pow(k));
if(i * k > deg) return P(deg, T(0));
ret = (ret << (i * k)).pre(deg);
if((int)ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return *this;
}
T eval(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
P pow_mod(int64_t n, P mod) const {
P modinv = mod.rev().inv();
auto get_div = [&](P base) {
if(base.size() < mod.size()) {
base.clear();
return base;
}
int n = base.size() - mod.size() + 1;
return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
};
P x(*this), ret{1};
while(n > 0) {
if(n & 1) {
ret *= x;
ret -= get_div(ret) * mod;
}
x *= x;
x -= get_div(x) * mod;
n >>= 1;
}
return ret;
}
};
*/
template< typename T >
struct FormalPowerSeries : vector< T > {
using vector< T >::vector;
using P = FormalPowerSeries;
using MULT = function< vector< T >(P, P) >;
using FFT = function< void(P &) >;
using SQRT = function< T(T) >;
static MULT &get_mult() {
static MULT mult = nullptr;
return mult;
}
static void set_mult(MULT f) {
get_mult() = f;
}
static FFT &get_fft() {
static FFT fft = nullptr;
return fft;
}
static FFT &get_ifft() {
static FFT ifft = nullptr;
return ifft;
}
static void set_fft(FFT f, FFT g) {
get_fft() = f;
get_ifft() = g;
if(get_mult() == nullptr) {
auto mult = [&](P a, P b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, T(0));
b.resize(sz, T(0));
get_fft()(a);
get_fft()(b);
for(int i = 0; i < sz; i++) a[i] *= b[i];
get_ifft()(a);
a.resize(need);
return a;
};
set_mult(mult);
}
}
static SQRT &get_sqrt() {
static SQRT sqr = nullptr;
return sqr;
}
static void set_sqrt(SQRT sqr) {
get_sqrt() = sqr;
}
void shrink() {
while(this->size() && this->back() == T(0)) this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
P &operator+=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
shrink();
return *this;
}
P &operator-=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] -= r;
shrink();
return *this;
}
P &operator*=(const T &v) {
const int n = (int) this->size();
for(int k = 0; k < n; k++) (*this)[k] *= v;
return *this;
}
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
assert(get_mult() != nullptr);
auto ret = get_mult()(*this, r);
return *this = P(begin(ret), end(ret));
}
P &operator%=(const P &r) {
return *this -= *this / r * r;
}
P operator-() const {
P ret(this->size());
for(int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P dot(P r) const {
P ret(min(this->size(), r.size()));
for(int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
P pre(int sz) const {
return P(begin(*this), begin(*this) + min((int) this->size(), sz));
}
P operator>>(int sz) const {
if(this->size() <= sz) return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1) ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
T operator()(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
// https://opt-cp.com/fps-implementation/
// multiply and divide (1 + cz^d)
P mul(const ll d, const T c) {
P ret(*this);
int n = ret.size();
if (c == T(1)) for(int i=n-d-1; i>=0; --i) ret[i+d] += ret[i];
else if (c == T(-1)) for(int i=n-d-1; i>=0; --i) ret[i+d] -= ret[i];
else for(int i=n-d-1; i>=0; --i) ret[i+d] += ret[i] * c;
return ret;
}
P div(const ll d, const T c) {
P ret(*this);
int n = ret.size();
if (c == T(1)) for(int i=0; i<n-d; ++i) ret[i+d] -= ret[i];
else if (c == T(-1)) for(int i=0; i<n-d; ++i) ret[i+d] += ret[i];
else for(int i=0; i<n-d; ++i) ret[i+d] -= ret[i] * c;
return ret;
}
// sparse
P mul(vector<pair<ll, T>> g) {
if ((int)g.size() == 2 && g[0] == pair<ll, T>(0, 1))
return mul(g[1].first, g[1].second);
P ret(*this);
int n = ret.size();
auto [d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
for(int i=n-1; i>=0; i--){
ret[i] *= c;
for (auto&& [j, b] : g) {
if (j > i) break;
ret[i] += ret[i-j] * b;
}
}
return ret;
}
// sparse, required: "g[0] == (0, c)" and "c != 0"
P div(vector<pair<ll, T>> g) {
if ((int)g.size() == 2 && g[0] == pair<ll, T>(0, 1))
return div(g[1].first, g[1].second);
P ret(*this);
int n = ret.size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
g.erase(g.begin());
for(int i=0; i<n; i++) {
for (auto&& [j, b] : g) {
if (j > i) break;
ret[i] -= ret[i-j] * b;
}
ret[i] /= c;
}
return ret;
}
P diff() const;
P integral() const;
// F(0) must not be 0
P inv_fast() const;
P inv(int deg = -1) const;
// F(0) must be 1
P log(int deg = -1) const;
P sqrt(int deg = -1) const;
// F(0) must be 0
P exp_fast(int deg = -1) const;
P exp(int deg = -1) const;
P pow(int64_t k, int deg = -1) const;
P mod_pow(int64_t k, P g) const;
P taylor_shift(T c) const;
};
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::diff() const {
const int n = (int) this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::integral() const {
const int n = (int) this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::inv_fast() const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
P res{T(1) / (*this)[0]};
for(int d = 1; d < n; d <<= 1) {
P f(2 * d), g(2 * d);
for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j];
for(int j = 0; j < d; j++) g[j] = res[j];
get_fft()(f);
get_fft()(g);
for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
get_ifft()(f);
for(int j = 0; j < d; j++) {
f[j] = 0;
f[j + d] = -f[j + d];
}
get_fft()(f);
for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
get_ifft()(f);
for(int j = 0; j < d; j++) f[j] = res[j];
res = f;
}
return res.pre(n);
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::inv(int deg) const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
if(get_fft() != nullptr) {
P ret(*this);
ret.resize(deg, T(0));
return ret.inv_fast();
}
P ret({T(1) / (*this)[0]});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::log(int deg) const {
assert((*this)[0] == 1);
const int n = (int) this->size();
if(deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::sqrt(int deg) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1) return {};
if(deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(deg - i / 2);
if(ret.empty()) return {};
ret = ret << (i / 2);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
P ret;
if(get_sqrt() == nullptr) {
assert((*this)[0] == T(1));
ret = {T(1)};
} else {
auto sqr = get_sqrt()((*this)[0]);
if(sqr * sqr != (*this)[0]) return {};
ret = {T(sqr)};
}
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::exp_fast(int deg) const {
if(deg == -1) deg = this->size();
assert((*this)[0] == T(0));
P inv;
inv.reserve(deg + 1);
inv.push_back(T(0));
inv.push_back(T(1));
auto inplace_integral = [&](P &F) -> void {
const int n = (int) F.size();
auto mod = T::get_mod();
while((int) inv.size() <= n) {
int i = inv.size();
inv.push_back((-inv[mod % i]) * (mod / i));
}
F.insert(begin(F), T(0));
for(int i = 1; i <= n; i++) F[i] *= inv[i];
};
auto inplace_diff = [](P &F) -> void {
if(F.empty()) return;
F.erase(begin(F));
T coeff = 1, one = 1;
for(int i = 0; i < (int) F.size(); i++) {
F[i] *= coeff;
coeff += one;
}
};
P b{1, 1 < (int) this->size() ? (*this)[1] : T(0)}, c{1}, z1, z2{1, 1};
for(int m = 2; m < deg; m *= 2) {
auto y = b;
y.resize(2 * m);
get_fft()(y);
z1 = z2;
P z(m);
for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
get_ifft()(z);
fill(begin(z), begin(z) + m / 2, T(0));
get_fft()(z);
for(int i = 0; i < m; ++i) z[i] *= -z1[i];
get_ifft()(z);
c.insert(end(c), begin(z) + m / 2, end(z));
z2 = c;
z2.resize(2 * m);
get_fft()(z2);
P x(begin(*this), begin(*this) + min< int >(this->size(), m));
inplace_diff(x);
x.push_back(T(0));
get_fft()(x);
for(int i = 0; i < m; ++i) x[i] *= y[i];
get_ifft()(x);
x -= b.diff();
x.resize(2 * m);
for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = T(0);
get_fft()(x);
for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
get_ifft()(x);
x.pop_back();
inplace_integral(x);
for(int i = m; i < min< int >(this->size(), 2 * m); ++i) x[i] += (*this)[i];
fill(begin(x), begin(x) + m, T(0));
get_fft()(x);
for(int i = 0; i < 2 * m; ++i) x[i] *= y[i];
get_ifft()(x);
b.insert(end(b), begin(x) + m, end(x));
}
return P(begin(b), begin(b) + deg);
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::exp(int deg) const {
assert((*this)[0] == T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
if(get_fft() != nullptr) {
P ret(*this);
ret.resize(deg, T(0));
return ret.exp_fast(deg);
}
P ret({T(1)});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::pow(int64_t k, int deg) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
for(int i = 0; i < n; i++) {
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k));
if(i * k > deg) return P(deg, T(0));
ret = (ret << (i * k)).pre(deg);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return *this;
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::mod_pow(int64_t k, P g) const {
P modinv = g.rev().inv();
auto get_div = [&](P base) {
if(base.size() < g.size()) {
base.clear();
return base;
}
int n = base.size() - g.size() + 1;
return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
};
P x(*this), ret{1};
while(k > 0) {
if(k & 1) {
ret *= x;
ret -= get_div(ret) * g;
}
x *= x;
x -= get_div(x) * g;
k >>= 1;
}
return ret;
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::taylor_shift(T c) const {
int n = (int) this->size();
vector< T > fact(n), rfact(n);
fact[0] = rfact[0] = T(1);
for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i);
rfact[n - 1] = T(1) / fact[n - 1];
for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i);
P p(*this);
for(int i = 0; i < n; i++) p[i] *= fact[i];
p = p.rev();
P bs(n, T(1));
for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
p = (p * bs).pre(n);
p = p.rev();
for(int i = 0; i < n; i++) p[i] *= rfact[i];
return p;
}
////
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
vector< Mint > dw, idw;
int max_base;
Mint root;
NumberTheoreticTransformFriendlyModInt() {
const unsigned mod = Mint::get_mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while(root.pow((mod - 1) >> 1) == 1) root += 1;
assert(root.pow(mod - 1) == 1);
dw.resize(max_base);
idw.resize(max_base);
for(int i = 0; i < max_base; i++) {
dw[i] = -root.pow((mod - 1) >> (i + 2));
idw[i] = Mint(1) / dw[i];
}
}
void ntt(vector< Mint > &a) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for(int m = n; m >>= 1;) {
Mint w = 1;
for(int s = 0, k = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j] * w;
a[i] = x + y, a[j] = x - y;
}
w *= dw[__builtin_ctz(++k)];
}
}
}
void intt(vector< Mint > &a, bool f = true) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for(int m = 1; m < n; m *= 2) {
Mint w = 1;
for(int s = 0, k = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j];
a[i] = x + y, a[j] = (x - y) * w;
}
w *= idw[__builtin_ctz(++k)];
}
}
if(f) {
Mint inv_sz = Mint(1) / n;
for(int i = 0; i < n; i++) a[i] *= inv_sz;
}
}
vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
};
/////////////////////
template<class T>
T extgcd(T a, T b, T& x, T& y) {
for (T u=y=1,v=x=0; a; ) {
T q = b / a;
swap(x -= q*u, u);
swap(y -= q*v, v);
swap(b -= q*a, a);
}
return b;
}
inline long long mod_pow(long long x, long long e, long long mod) {
long long v = 1LL;
for ( ; e; e>>=1) {
if (e & 1) v = (v * x) % mod;
x = (x * x) % mod;
}
return v;
}
inline long long mod_inv(long long a, long long mod) {
// return mod_pow(a, mod-2, mod); // slower
long long x, y;
extgcd(a, mod, x, y);
return (mod + x % mod) % mod;
// ax + MODy = 1
// aとmodが互いに素である限り解が存在する
// ax = 1 - MODy
// ax % MOD = 1
// x = 1/a % MOD
}
long long _garner(vector<long long>& xs, vector<long long>& mods) {
int M = xs.size();
vector<long long> coeffs(M, 1), constants(M, 0);
for (int i=0; i<M-1; ++i) {
long long mod_i = mods[i];
// coffs[i] * v + constants[i] == mr[i].val (mod mr[i].first) を解く
long long v = (xs[i] - constants[i] + mod_i) % mod_i;
v = (v * mod_inv(coeffs[i], mod_i)) % mod_i;
for (int j=i+1; j<M; j++) {
long long mod_j = mods[j];
constants[j] = (constants[j] + coeffs[j] * v) % mod_j;
coeffs[j] = (coeffs[j] * mod_i) % mod_j;
}
}
return constants.back();
}
template<typename T>
inline void bit_reverse(vector<T>& a) {
int n = a.size();
int i = 0;
for (int j=1; j<n-1; ++j) {
for (int k = n >> 1; k >(i ^= k); k >>= 1);
if (j < i) swap(a[i], a[j]);
}
}
template<long long mod, long long primitive_root>
class NTT {
public:
long long get_mod() { return mod; }
void _ntt(vector<long long>& a, int sign) {
const int n = a.size();
assert((n ^ (n&-n)) == 0); //n = 2^k
const long long g = primitive_root; // g is primitive root of mod
long long tmp = (mod - 1) * mod_inv(n, mod) % mod; // -1/n
long long h = mod_pow(g, tmp, mod); // ^n√g
if (sign == -1) h = mod_inv(h, mod);
bit_reverse(a);
for (int m=1; m<n; m<<=1) {
const int m2 = 2 * m;
// long long _base = mod_pow(h.val, n/m2, mod);
long long _base = mod_pow(h, n/m2, mod);
long long _w = 1;
for (int x=0; x<m; ++x) {
for (int s=x; s<n; s+=m2) {
long long u = a[s];
long long d = (a[s + m] * _w) % mod;
a[s] = (u+d) % mod;
a[s+m] = (u-d+mod) % mod;
}
_w = (_w * _base) % mod;
}
}
}
void ntt(vector<long long>& input) {
_ntt(input, 1);
}
void intt(vector<long long>& input) {
_ntt(input, -1);
const long long n_inv = mod_inv(input.size(), mod);
for (auto &x : input) x = (x * n_inv) % mod;
}
// 畳み込み演算を行う
vector<long long> convolution(const vector<long long>& a, const vector<long long>& b){
int result_size = a.size() + b.size() - 1;
int n = 1; while (n < result_size) n <<= 1;
vector<long long> _a = a, _b = b;
_a.resize(n, 0);
_b.resize(n, 0);
ntt(_a);
ntt(_b);
for (int i=0; i<n; ++i) _a[i] = (_a[i] * _b[i]) % mod;
intt(_a);
_a.resize(result_size);
return _a;
}
};
template <typename T>
vector<T> convolution_ntt(const vector<T>& x, const vector<T>& y) {
vector<ll> a(x.size()), b(y.size());
for (int i = 0; i < (int)x.size(); i++) a[i] = x[i];
for (int i = 0; i < (int)y.size(); i++) b[i] = y[i];
// ll maxval = max(a.size(), b.size()) * *max_element(a.begin(), a.end()) * *max_element(b.begin(), b.end());
// if (maxval < 1224736769) {
// NTT<1224736769, 3> ntt3;
// return ntt3.convolution(a, b);
// }
NTT<167772161, 3> ntt1;
NTT<469762049, 3> ntt2;
NTT<1224736769, 3> ntt3;
vector<long long> x1 = ntt1.convolution(a, b);
vector<long long> x2 = ntt2.convolution(a, b);
vector<long long> x3 = ntt3.convolution(a, b);
vector<T> ret(x1.size());
vector<long long> mods { 167772161, 469762049, 1224736769, T::get_mod() };
for (int i=0; i<x1.size(); ++i) {
vector<long long> xs { x1[i], x2[i], x3[i], 0 };
ret[i] = _garner(xs, mods);
}
return ret;
}
/*-----8<-----library-----8<-----*/
void solve() {
/*
NumberTheoreticTransformFriendlyModInt< Modint > ntt;
using FPS = FormalPowerSeries< Modint >;
using SPARSE = vector<pair<ll,Modint>>;
auto mult = [&](const FPS::P &a, const FPS::P &b) {
auto ret = ntt.multiply(a, b);
return FPS::P(ret.begin(), ret.end());
};
FPS::set_mult(mult);
FPS::set_fft([&](FPS::P &a) { ntt.ntt(a); }, [&](FPS::P &a) { ntt.intt(a); });
*/
using FPS = FormalPowerSeries< Modint >;
using SPARSE = vector<pair<ll,Modint>>;
auto mult = [&](const FPS::P& a, const FPS::P& b) { return convolution_ntt(a, b); };
FPS::set_mult(mult);
ll K, N;
cin >> K >> N;
//T=(x^(進める歩数1) + x^(進める歩数2) + ... )とすると、
//求めたいのは 1 + T + T^2 + ... = 1/(1-T)
//まず X に 1-T をつくる
ll size = K+1;
FormalPowerSeries<Modint> X(size);
X[0] = 1;
for(ll i = 0; i < N; i++) {
ll t;
cin >> t;
if(t <= K) X[t] = -1;
}
//1/(1-T)
FormalPowerSeries<Modint> v = X.inv(size);
//x^Kの係数が解となる
Modint ans = v[K];
cout << ans << endl;
//スパース(疎)な乗算、除算 O(NK) (K=係数が0でない項の数)
//Y={xの次数, 係数}を詰めた配列
vector<pair<ll,Modint>> Y{{0,1},{1,-1}};
FormalPowerSeries<Modint> Z = X.mul(Y);
FormalPowerSeries<Modint> U = X.div(Y);
}
signed main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
//ll Q; cin >> Q; while(Q--)solve();
solve();
return 0;
}