結果
| 問題 |
No.1255 ハイレーツ・オブ・ボリビアン
|
| コンテスト | |
| ユーザー |
👑 Kazun
|
| 提出日時 | 2021-01-13 23:31:33 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 197 ms / 2,000 ms |
| コード長 | 3,753 bytes |
| コンパイル時間 | 225 ms |
| コンパイル使用メモリ | 82,432 KB |
| 実行使用メモリ | 68,352 KB |
| 最終ジャッジ日時 | 2024-11-22 20:16:38 |
| 合計ジャッジ時間 | 2,716 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 15 |
ソースコード
class Modulo_Error(Exception):
pass
class Modulo():
def __init__(self,a,n):
self.a=a%n
self.n=n
def __str__(self):
return "{} (mod {})".format(self.a,self.n)
def __repr__(self):
return self.__str__()
#+,-
def __pos__(self):
return self
def __neg__(self):
return Modulo(-self.a,self.n)
#等号,不等号
def __eq__(self,other):
if isinstance(other,Modulo):
return (self.a==other.a) and (self.n==other.n)
elif isinstance(other,int):
return (self-other).a==0
def __neq__(self,other):
return not(self==other)
def __le__(self,other):
a,p=self.a,self.n
b,q=other.a,other.n
return (a-b)%q==0 and p%q==0
def __ge__(self,other):
return other<=self
def __lt__(self,other):
return (self<=other) and (self!=other)
def __gt__(self,other):
return (self>=other) and (self!=other)
#加法
def __add__(self,other):
if isinstance(other,Modulo):
if self.n!=other.n:
raise Modulo_Error("異なる法同士の演算です.")
return Modulo(self.a+other.a,self.n)
elif isinstance(other,int):
return Modulo(self.a+other,self.n)
def __radd__(self,other):
if isinstance(other,int):
return Modulo(self.a+other,self.n)
#減法
def __sub__(self,other):
return self+(-other)
def __rsub__(self,other):
if isinstance(other,int):
return -self+other
#乗法
def __mul__(self,other):
if isinstance(other,Modulo):
if self.n!=other.n:
raise Modulo_Error("異なる法同士の演算です.")
return Modulo(self.a*other.a,self.n)
elif isinstance(other,int):
return Modulo(self.a*other,self.n)
def __rmul__(self,other):
if isinstance(other,int):
return Modulo(self.a*other,self.n)
#Modulo逆数
def inverse(self):
return self.Modulo_Inverse()
def Modulo_Inverse(self):
x0, y0, x1, y1 = 1, 0, 0, 1
a,b=self.a,self.n
while b != 0:
q, a, b = a // b, b, a % b
x0, x1 = x1, x0 - q * x1
y0, y1 = y1, y0 - q * y1
if a!=1:
raise Modulo_Error("{}の逆数が存在しません".format(self))
else:
return Modulo(x0,self.n)
#除法
def __truediv__(self,other):
return self*(other.Modulo_Inverse())
def __rtruediv__(self,other):
return other*(self.Modulo_Inverse())
#累乗
def __pow__(self,other):
if isinstance(other,int):
u=abs(other)
r=Modulo(pow(self.a,u,self.n),self.n)
if other>=0:
return r
else:
return r.Modulo_Inverse()
else:
b,n=other.a,other.n
if pow(self.a,n,self.n)!=1:
raise Modulo_Error("矛盾なく定義できません.")
else:
return self**b
def Order(X):
"""Xの位数を求める. つまり, X^k=[1] を満たす最小の正整数 k を求める.
"""
R=X.n
N=X.n
k=2
while k*k<=N:
if N%k==0:
R-=R//k
while N%k==0:
N//=k
k+=1
if N>1:
R-=R//N
D=[]
k=1
while k*k<=R:
if R%k==0:
D.append(k)
D.append(R//k)
k+=1
a=float("inf")
for k in D:
if pow(X,k)==1:
a=min(a,k)
return a
#=================================================
T=int(input())
for _ in range(T):
N=int(input())
X=Modulo(2,2*N-1)
print(Order(X))
Kazun