結果
| 問題 |
No.1344 Typical Shortest Path Sum
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-01-16 13:31:49 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,276 bytes |
| コンパイル時間 | 2,165 ms |
| コンパイル使用メモリ | 205,236 KB |
| 最終ジャッジ日時 | 2025-01-17 22:07:20 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 72 TLE * 5 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
#pragma region atcoder
//#include <atcoder/modint>
//using namespace atcoder;
//using mint = modint998244353;
//using mint = modint1000000007;
#pragma endregion
#pragma region debug for var, v, vv
#define debug(var) do{std::cerr << #var << " : ";view(var);}while(0)
template<typename T> void view(T e){std::cerr << e << std::endl;}
template<typename T> void view(const std::vector<T>& v){for(const auto& e : v){ std::cerr << e << " "; } std::cerr << std::endl;}
template<typename T> void view(const std::vector<std::vector<T> >& vv){cerr << endl;int cnt = 0;for(const auto& v : vv){cerr << cnt << "th : "; view(v); cnt++;} cerr << endl;}
#pragma endregion
using ll = long long;
const ll mod = 1000000007;
const int inf = 1001001001;
const ll INF = 1001001001001001001ll;
int dx[]={1,0,-1,0};
int dy[]={0,1,0,-1};
template<class T, class K>bool chmax(T &a, const K b) { if (a<b) { a=b; return 1; } return 0; }
template<class T, class K>bool chmin(T &a, const K b) { if (b<a) { a=b; return 1; } return 0; }
ll rudiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // 20 / 3 == 7
ll rddiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // -20 / 3 == -7
ll power(ll a, ll p){ll ret = 1; while(p){if(p & 1){ret = ret * a;} a = a * a; p >>= 1;} return ret;}
ll modpow(ll a, ll p, ll m){ll ret = 1; while(p){if(p & 1){ret = ret * a % m;} a = a * a % m; p >>= 1;} return ret;}
/*---------------------------------------------------------------------------------------------------------------------------------*/
struct Graph{
struct Edge{
int to; long long cost;
Edge(int to, long long cost) : to(to), cost(cost) {}
};
ll num;
vector<vector<Edge>> G;
vector<ll> dist;
// constructor for initialization
Graph(int n) : num(n){
G.resize(n), dist.resize(n);
}
// assembling a graph whose edge is coming from s to t
void add_edge(ll s, ll t, ll cost, bool directed){
G[s].emplace_back(t, cost);
if(!directed) G[t].emplace_back(s, cost);
}
// dijkstra algorithm
ll dijkstra(int s, int g){
fill(dist.begin(), dist.end(), INF);
using P = pair<ll, int>;
priority_queue<P, vector<P>, greater<P>> que;
que.push({dist[s] = 0, s});
while(!que.empty()){
P p = que.top(); que.pop();
int v = p.second;
if(dist[v] < p.first) continue;
for(auto e : G[v]){
if(chmin(dist[e.to], dist[v] + e.cost)) que.push({dist[e.to], e.to});
}
}
return dist[g];
}
};
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
//cout << fixed << setprecision(20);
int n, m; cin >> n >> m;
Graph g(n);
for(int i = 0; i < m; i++){
int a, b; cin >> a >> b;
a--, --b;
ll d; cin >> d;
g.add_edge(a, b, d, true);
}
for(int i = 0; i < n; i++){
ll ans = 0;
g.dijkstra(i, (i + 1) % n);
for(int j = 0; j < n; j++){
if(i == j) continue;
ans += (g.dist[j] == INF ? 0 : g.dist[j]);
}
cout << ans << endl;
}
}
/*
* review you code when you get WA (typo? index?)
* int overflow, array bounds
* special cases (n=1?)
*/