結果
問題 |
No.1344 Typical Shortest Path Sum
|
ユーザー |
|
提出日時 | 2021-01-16 13:31:49 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,276 bytes |
コンパイル時間 | 2,165 ms |
コンパイル使用メモリ | 205,236 KB |
最終ジャッジ日時 | 2025-01-17 22:07:20 |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 72 TLE * 5 |
ソースコード
#include<bits/stdc++.h> using namespace std; #pragma region atcoder //#include <atcoder/modint> //using namespace atcoder; //using mint = modint998244353; //using mint = modint1000000007; #pragma endregion #pragma region debug for var, v, vv #define debug(var) do{std::cerr << #var << " : ";view(var);}while(0) template<typename T> void view(T e){std::cerr << e << std::endl;} template<typename T> void view(const std::vector<T>& v){for(const auto& e : v){ std::cerr << e << " "; } std::cerr << std::endl;} template<typename T> void view(const std::vector<std::vector<T> >& vv){cerr << endl;int cnt = 0;for(const auto& v : vv){cerr << cnt << "th : "; view(v); cnt++;} cerr << endl;} #pragma endregion using ll = long long; const ll mod = 1000000007; const int inf = 1001001001; const ll INF = 1001001001001001001ll; int dx[]={1,0,-1,0}; int dy[]={0,1,0,-1}; template<class T, class K>bool chmax(T &a, const K b) { if (a<b) { a=b; return 1; } return 0; } template<class T, class K>bool chmin(T &a, const K b) { if (b<a) { a=b; return 1; } return 0; } ll rudiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // 20 / 3 == 7 ll rddiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // -20 / 3 == -7 ll power(ll a, ll p){ll ret = 1; while(p){if(p & 1){ret = ret * a;} a = a * a; p >>= 1;} return ret;} ll modpow(ll a, ll p, ll m){ll ret = 1; while(p){if(p & 1){ret = ret * a % m;} a = a * a % m; p >>= 1;} return ret;} /*---------------------------------------------------------------------------------------------------------------------------------*/ struct Graph{ struct Edge{ int to; long long cost; Edge(int to, long long cost) : to(to), cost(cost) {} }; ll num; vector<vector<Edge>> G; vector<ll> dist; // constructor for initialization Graph(int n) : num(n){ G.resize(n), dist.resize(n); } // assembling a graph whose edge is coming from s to t void add_edge(ll s, ll t, ll cost, bool directed){ G[s].emplace_back(t, cost); if(!directed) G[t].emplace_back(s, cost); } // dijkstra algorithm ll dijkstra(int s, int g){ fill(dist.begin(), dist.end(), INF); using P = pair<ll, int>; priority_queue<P, vector<P>, greater<P>> que; que.push({dist[s] = 0, s}); while(!que.empty()){ P p = que.top(); que.pop(); int v = p.second; if(dist[v] < p.first) continue; for(auto e : G[v]){ if(chmin(dist[e.to], dist[v] + e.cost)) que.push({dist[e.to], e.to}); } } return dist[g]; } }; int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); //cout << fixed << setprecision(20); int n, m; cin >> n >> m; Graph g(n); for(int i = 0; i < m; i++){ int a, b; cin >> a >> b; a--, --b; ll d; cin >> d; g.add_edge(a, b, d, true); } for(int i = 0; i < n; i++){ ll ans = 0; g.dijkstra(i, (i + 1) % n); for(int j = 0; j < n; j++){ if(i == j) continue; ans += (g.dist[j] == INF ? 0 : g.dist[j]); } cout << ans << endl; } } /* * review you code when you get WA (typo? index?) * int overflow, array bounds * special cases (n=1?) */