結果

問題 No.1353 Limited Sequence
ユーザー LayCurseLayCurse
提出日時 2021-01-17 13:54:48
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 96 ms / 2,000 ms
コード長 6,583 bytes
コンパイル時間 2,536 ms
コンパイル使用メモリ 213,616 KB
実行使用メモリ 19,200 KB
最終ジャッジ日時 2024-11-29 14:59:02
合計ジャッジ時間 5,974 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 13 ms
19,200 KB
testcase_01 AC 14 ms
19,072 KB
testcase_02 AC 14 ms
19,200 KB
testcase_03 AC 14 ms
19,072 KB
testcase_04 AC 13 ms
19,072 KB
testcase_05 AC 13 ms
19,072 KB
testcase_06 AC 13 ms
19,200 KB
testcase_07 AC 13 ms
19,072 KB
testcase_08 AC 13 ms
19,072 KB
testcase_09 AC 14 ms
18,944 KB
testcase_10 AC 14 ms
19,072 KB
testcase_11 AC 13 ms
19,200 KB
testcase_12 AC 48 ms
19,072 KB
testcase_13 AC 46 ms
19,180 KB
testcase_14 AC 25 ms
18,944 KB
testcase_15 AC 43 ms
19,072 KB
testcase_16 AC 16 ms
19,200 KB
testcase_17 AC 21 ms
19,072 KB
testcase_18 AC 51 ms
19,072 KB
testcase_19 AC 64 ms
19,072 KB
testcase_20 AC 27 ms
19,072 KB
testcase_21 AC 16 ms
19,072 KB
testcase_22 AC 19 ms
19,072 KB
testcase_23 AC 45 ms
19,072 KB
testcase_24 AC 40 ms
19,200 KB
testcase_25 AC 57 ms
18,944 KB
testcase_26 AC 35 ms
19,072 KB
testcase_27 AC 26 ms
19,072 KB
testcase_28 AC 28 ms
18,944 KB
testcase_29 AC 21 ms
19,072 KB
testcase_30 AC 39 ms
19,072 KB
testcase_31 AC 31 ms
18,944 KB
testcase_32 AC 33 ms
19,200 KB
testcase_33 AC 17 ms
19,072 KB
testcase_34 AC 43 ms
19,072 KB
testcase_35 AC 22 ms
19,072 KB
testcase_36 AC 22 ms
19,200 KB
testcase_37 AC 94 ms
19,072 KB
testcase_38 AC 89 ms
19,072 KB
testcase_39 AC 95 ms
19,072 KB
testcase_40 AC 95 ms
19,072 KB
testcase_41 AC 95 ms
19,072 KB
testcase_42 AC 90 ms
19,072 KB
testcase_43 AC 93 ms
19,200 KB
testcase_44 AC 95 ms
19,200 KB
testcase_45 AC 94 ms
19,072 KB
testcase_46 AC 96 ms
19,072 KB
testcase_47 AC 59 ms
19,072 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(int &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
int N;
int L;
int R;
int A[2000];
Modint dp[2000][2001];
int main(){
  int k;
  int m;
  Modint res = 0;
  Modint s;
  Modint d;
  rd(N);
  rd(L);
  rd(R);
  {
    int Lj4PdHRW;
    for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
      rd(A[Lj4PdHRW]);
    }
  }
  for(k=(0);k<(R);k++){
    int i;
    {
      int RZTsC2BF;
      remove_reference<decltype(dp[RZTsC2BF][k])>::type FmcKpFmN;
      int xr20shxY = 0;
      if((0) > ((N)-1)){
        FmcKpFmN = 0;
      }
      else{
        for(RZTsC2BF = 0; RZTsC2BF <= (N)-1; RZTsC2BF++){
          if(xr20shxY == 0){
            FmcKpFmN = dp[RZTsC2BF][k];
            xr20shxY = 1;
            continue;
          }
          FmcKpFmN += dp[RZTsC2BF][k];
        }
      }
      s =FmcKpFmN;
    }
    if(k==0){
      s += 1;
    }
    for(i=(0);i<(N);i++){
      int j;
      d = s - dp[i][k];
      for(j=(1);j<(A[i]+1);j++){
        m = k + (i+1) * j;
        if(m > R){
          break;
        }
        dp[i][m] += d;
        if(m >= L){
          res += d;
        }
      }
    }
  }
  wt_L(res);
  wt_L('\n');
  return 0;
}
// cLay version 20210103-1 [bug fixed 1]

// --- original code ---
// #define MD 998244353
// int N, L, R, A[2000];
// Modint dp[2000][2001];
// {
//   int m;
//   Modint res = 0, s, d;
// 
//   rd(N,L,R,A(N));
// 
//   rep(k,R){
//     s = sum[i,0,N](dp[i][k]);
//     if(k==0) s += 1;
//     rep(i,N){
//       d = s - dp[i][k];
//       rep(j,1,A[i]+1){
//         m = k + (i+1) * j;
//         if(m > R) break;
//         dp[i][m] += d;
//         if(m >= L) res += d;
//       }
//     }
//   }
// 
//   wt(res);
// }
0