結果

問題 No.1364 [Renaming] Road to Cherry from Zelkova
ユーザー hitonanodehitonanode
提出日時 2021-01-22 21:45:09
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 15,191 bytes
コンパイル時間 3,060 ms
コンパイル使用メモリ 228,276 KB
実行使用メモリ 31,936 KB
最終ジャッジ日時 2024-06-08 14:13:13
合計ジャッジ時間 10,018 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 9 ms
5,376 KB
testcase_09 AC 5 ms
5,376 KB
testcase_10 AC 9 ms
5,376 KB
testcase_11 AC 9 ms
5,376 KB
testcase_12 AC 9 ms
5,376 KB
testcase_13 AC 157 ms
22,996 KB
testcase_14 AC 197 ms
20,736 KB
testcase_15 AC 213 ms
24,192 KB
testcase_16 AC 125 ms
16,896 KB
testcase_17 AC 69 ms
18,304 KB
testcase_18 AC 258 ms
30,952 KB
testcase_19 AC 262 ms
30,816 KB
testcase_20 AC 254 ms
30,940 KB
testcase_21 AC 252 ms
30,956 KB
testcase_22 AC 261 ms
30,956 KB
testcase_23 AC 49 ms
12,032 KB
testcase_24 AC 28 ms
5,888 KB
testcase_25 AC 133 ms
16,256 KB
testcase_26 AC 212 ms
20,608 KB
testcase_27 AC 111 ms
13,312 KB
testcase_28 AC 82 ms
13,056 KB
testcase_29 AC 97 ms
12,544 KB
testcase_30 AC 82 ms
13,056 KB
testcase_31 AC 62 ms
12,924 KB
testcase_32 AC 72 ms
11,520 KB
testcase_33 AC 191 ms
18,048 KB
testcase_34 WA -
testcase_35 AC 209 ms
27,328 KB
testcase_36 AC 224 ms
25,276 KB
testcase_37 AC 66 ms
9,728 KB
testcase_38 AC 85 ms
11,648 KB
testcase_39 AC 86 ms
11,648 KB
testcase_40 AC 84 ms
11,392 KB
testcase_41 AC 84 ms
11,776 KB
testcase_42 AC 86 ms
11,648 KB
testcase_43 AC 81 ms
31,932 KB
testcase_44 AC 58 ms
24,280 KB
testcase_45 AC 86 ms
31,936 KB
testcase_46 AC 14 ms
16,660 KB
testcase_47 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#else
#define dbg(x) (x)
#endif

template <int mod> struct ModInt {
#if __cplusplus >= 201402L
#define MDCONST constexpr
#else
#define MDCONST
#endif
    using lint = long long;
    MDCONST static int get_mod() { return mod; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = mod - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < mod; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((mod - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val;
    MDCONST ModInt() : val(0) {}
    MDCONST ModInt &_setval(lint v) { return val = (v >= mod ? v - mod : v), *this; }
    MDCONST ModInt(lint v) { _setval(v % mod + mod); }
    MDCONST explicit operator bool() const { return val != 0; }
    MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }
    MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); }
    MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); }
    MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); }
    MDCONST ModInt operator-() const { return ModInt()._setval(mod - val); }
    MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); }
    friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); }
    friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); }
    friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); }
    MDCONST bool operator==(const ModInt &x) const { return val == x.val; }
    MDCONST bool operator!=(const ModInt &x) const { return val != x.val; }
    MDCONST bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val; }
    MDCONST ModInt pow(lint n) const {
        lint ans = 1, tmp = this->val;
        while (n) {
            if (n & 1) ans = ans * tmp % mod;
            tmp = tmp * tmp % mod, n /= 2;
        }
        return ans;
    }

    static std::vector<long long> facs, invs;
    MDCONST static void _precalculation(int N) {
        int l0 = facs.size();
        if (N <= l0) return;
        facs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i % mod;
        long long facinv = ModInt(facs.back()).pow(mod - 2).val;
        for (int i = N - 1; i >= l0; i--) {
            invs[i] = facinv * facs[i - 1] % mod;
            facinv = facinv * i % mod;
        }
    }
    MDCONST lint inv() const {
        if (this->val < 1 << 20) {
            while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val];
        } else {
            return this->pow(mod - 2).val;
        }
    }
    MDCONST ModInt fac() const {
        while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val];
    }

    MDCONST ModInt doublefac() const {
        lint k = (this->val + 1) / 2;
        return (this->val & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k);
    }
    MDCONST ModInt nCr(const ModInt &r) const { return (this->val < r.val) ? 0 : this->fac() / ((*this - r).fac() * r.fac()); }

    ModInt sqrt() const {
        if (val == 0) return 0;
        if (mod == 2) return val;
        if (pow((mod - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((mod - 1) / 2) == 1) b += 1;
        int e = 0, m = mod - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val, mod - x.val));
    }
};
template <int mod> std::vector<long long> ModInt<mod>::facs = {1};
template <int mod> std::vector<long long> ModInt<mod>::invs = {0};
using mint = ModInt<1000000007>;

// Directed graph library to find strongly connected components (強連結成分分解)
// 0-indexed directed graph
// Complexity: O(V + E)
struct DirectedGraphSCC {
    int V; // # of Vertices
    std::vector<std::vector<int>> to, from;
    std::vector<int> used; // Only true/false
    std::vector<int> vs;
    std::vector<int> cmp;
    int scc_num = -1;

    DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {}

    void _dfs(int v) {
        used[v] = true;
        for (auto t : to[v])
            if (!used[t]) _dfs(t);
        vs.push_back(v);
    }
    void _rdfs(int v, int k) {
        used[v] = true;
        cmp[v] = k;
        for (auto t : from[v])
            if (!used[t]) _rdfs(t, k);
    }

    void add_edge(int from_, int to_) {
        assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V);
        to[from_].push_back(to_);
        from[to_].push_back(from_);
    }

    // Detect strongly connected components and return # of them.
    // Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed)
    int FindStronglyConnectedComponents() {
        used.assign(V, false);
        vs.clear();
        for (int v = 0; v < V; v++)
            if (!used[v]) _dfs(v);
        used.assign(V, false);
        scc_num = 0;
        for (int i = (int)vs.size() - 1; i >= 0; i--)
            if (!used[vs[i]]) _rdfs(vs[i], scc_num++);
        return scc_num;
    }

    // Find and output the vertices that form a closed cycle.
    // output: {v_1, ..., v_C}, where C is the length of cycle,
    //         {} if there's NO cycle (graph is DAG)
    int _c, _init;
    std::vector<int> _ret_cycle;
    bool _dfs_detectcycle(int now, bool b0) {
        if (now == _init and b0) return true;
        for (auto nxt : to[now])
            if (cmp[nxt] == _c and !used[nxt]) {
                _ret_cycle.emplace_back(nxt), used[nxt] = 1;
                if (_dfs_detectcycle(nxt, true)) return true;
                _ret_cycle.pop_back();
            }
        return false;
    }
    std::vector<int> DetectCycle() {
        int ns = FindStronglyConnectedComponents();
        if (ns == V) return {};
        std::vector<int> cnt(ns);
        for (auto x : cmp) cnt[x]++;
        _c = std::find_if(cnt.begin(), cnt.end(), [](int x) { return x > 1; }) - cnt.begin();
        _init = std::find(cmp.begin(), cmp.end(), _c) - cmp.begin();
        used.assign(V, false);
        _ret_cycle.clear();
        _dfs_detectcycle(_init, false);
        return _ret_cycle;
    }

    // After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all vertices
    // belonging to the same component(The resultant graph is DAG).
    DirectedGraphSCC GenerateTopologicalGraph() {
        DirectedGraphSCC newgraph(scc_num);
        for (int s = 0; s < V; s++)
            for (auto t : to[s]) {
                if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]);
            }
        return newgraph;
    }
};

// 2-SAT solver: Find a solution for  `(Ai v Aj) ^ (Ak v Al) ^ ... = true`
// - `nb_sat_vars`: Number of variables
// - Considering a graph with `2 * nb_sat_vars` vertices
// - Vertices [0, nb_sat_vars) means `Ai`
// - vertices [nb_sat_vars, 2 * nb_sat_vars) means `not Ai`
struct SATSolver : DirectedGraphSCC {
    int nb_sat_vars;
    std::vector<int> solution;
    SATSolver(int nb_variables = 0) : DirectedGraphSCC(nb_variables * 2), nb_sat_vars(nb_variables), solution(nb_sat_vars) {}
    void add_x_or_y_constraint(bool is_x_true, int x, bool is_y_true, int y) {
        assert(x >= 0 and x < nb_sat_vars);
        assert(y >= 0 and y < nb_sat_vars);
        if (!is_x_true) x += nb_sat_vars;
        if (!is_y_true) y += nb_sat_vars;
        add_edge((x + nb_sat_vars) % (nb_sat_vars * 2), y);
        add_edge((y + nb_sat_vars) % (nb_sat_vars * 2), x);
    }
    // Solve the 2-SAT problem. If no solution exists, return `false`.
    // Otherwise, dump one solution to `solution` and return `true`.
    bool run() {
        FindStronglyConnectedComponents();
        for (int i = 0; i < nb_sat_vars; i++) {
            if (cmp[i] == cmp[i + nb_sat_vars]) return false;
            solution[i] = cmp[i] > cmp[i + nb_sat_vars];
        }
        return true;
    }
};

int main() {
    int N, M;
    cin >> N >> M;
    N++;
    vector<vector<pair<int, pair<mint, mint>>>> to(N), toinv(N);
    DirectedGraphSCC graph(N);
    while (M--) {
        lint u, v, l, a;
        cin >> u >> v >> l >> a;
        graph.add_edge(u, v);
        to[u].emplace_back(v, make_pair(l, a));
        toinv[v].emplace_back(u, make_pair(l, a));
    }
    graph.FindStronglyConnectedComponents();
    vector<pint> ord(N);
    REP(i, N) ord[i] = make_pair(graph.cmp[i], i);
    sort(ord.begin(), ord.end());

    vector<mint> dpcnt(N);
    vector<mint> dptot(N);
    dpcnt[0] = 1;
    vector<int> arrive(N);
    vector<int> arrive_back(N);
    vector<int> bad(N);

    arrive[0] = 1;
    for (auto [_, i] : ord) if (arrive[i]) {
        for (auto [j, la] : to[i]) {
            arrive[j] = true;
            if (bad[i]) bad[j] = true;
            if (graph.cmp[i] == graph.cmp[j]) {
                bad[j] = true;
            }
            dptot[j] += dptot[i] * la.second + dpcnt[i] * la.first * la.second;
            dpcnt[j] += dpcnt[i] * la.second;
        }
    }
    dbg(dptot);
    dbg(dpcnt);
    dbg(ord);

    arrive_back.back() = 1;
    IREP(ii, ord.size()) {
        int i = ord[ii].second;
        if (!arrive_back[i]) continue;
        for (auto [j, la] : toinv[i]) {
            arrive_back[j] = true;
        }
    }

    REP(i, N) if (arrive[i] and arrive_back[i] and bad[i]) {
        puts("INF");
        return 0;
    }

    cout << dptot.back() << '\n';
}
0