結果
問題 | No.1364 [Renaming] Road to Cherry from Zelkova |
ユーザー | Mister |
提出日時 | 2021-01-22 21:57:19 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 17,215 bytes |
コンパイル時間 | 1,305 ms |
コンパイル使用メモリ | 100,528 KB |
実行使用メモリ | 39,820 KB |
最終ジャッジ日時 | 2024-12-28 00:16:21 |
合計ジャッジ時間 | 8,767 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 10 ms
5,376 KB |
testcase_09 | AC | 5 ms
5,248 KB |
testcase_10 | AC | 10 ms
5,376 KB |
testcase_11 | AC | 9 ms
5,248 KB |
testcase_12 | AC | 10 ms
5,376 KB |
testcase_13 | AC | 132 ms
28,440 KB |
testcase_14 | AC | 171 ms
32,640 KB |
testcase_15 | AC | 184 ms
33,792 KB |
testcase_16 | AC | 122 ms
24,832 KB |
testcase_17 | AC | 62 ms
18,560 KB |
testcase_18 | AC | 220 ms
39,812 KB |
testcase_19 | AC | 224 ms
39,796 KB |
testcase_20 | AC | 240 ms
39,640 KB |
testcase_21 | AC | 236 ms
39,820 KB |
testcase_22 | AC | 245 ms
39,776 KB |
testcase_23 | AC | 45 ms
12,928 KB |
testcase_24 | AC | 33 ms
9,856 KB |
testcase_25 | AC | 116 ms
23,296 KB |
testcase_26 | AC | 183 ms
32,896 KB |
testcase_27 | AC | 116 ms
25,088 KB |
testcase_28 | AC | 77 ms
17,920 KB |
testcase_29 | AC | 106 ms
24,192 KB |
testcase_30 | AC | 82 ms
18,304 KB |
testcase_31 | AC | 58 ms
14,848 KB |
testcase_32 | AC | 82 ms
21,248 KB |
testcase_33 | AC | 165 ms
30,336 KB |
testcase_34 | AC | 163 ms
30,720 KB |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | AC | 75 ms
18,816 KB |
testcase_38 | AC | 99 ms
24,192 KB |
testcase_39 | AC | 102 ms
24,320 KB |
testcase_40 | AC | 101 ms
24,192 KB |
testcase_41 | AC | 100 ms
24,192 KB |
testcase_42 | AC | 99 ms
24,192 KB |
testcase_43 | AC | 82 ms
33,124 KB |
testcase_44 | AC | 58 ms
24,548 KB |
testcase_45 | AC | 83 ms
33,120 KB |
testcase_46 | AC | 11 ms
14,384 KB |
testcase_47 | WA | - |
ソースコード
#line 2 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Graph/topological_sort.hpp" #line 2 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Graph/graph.hpp" #include <vector> template <class Cost = int> struct Edge { int src, dst; Cost cost; Edge() = default; Edge(int src, int dst, Cost cost = 1) : src(src), dst(dst), cost(cost){}; bool operator<(const Edge<Cost>& e) const { return cost < e.cost; } bool operator>(const Edge<Cost>& e) const { return cost > e.cost; } }; template <class Cost = int> struct Graph : public std::vector<std::vector<Edge<Cost>>> { using std::vector<std::vector<Edge<Cost>>>::vector; void span(bool direct, int src, int dst, Cost cost = 1) { (*this)[src].emplace_back(src, dst, cost); if (!direct) (*this)[dst].emplace_back(dst, src, cost); } }; #line 4 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Graph/topological_sort.hpp" #include <algorithm> template <class Cost = int> struct TopologicalSort { Graph<Cost> graph; std::vector<bool> visited; std::vector<int> vs, id; explicit TopologicalSort(const Graph<Cost>& graph) : graph(graph), visited(graph.size(), false), id(graph.size()) { for (int v = 0; v < (int)graph.size(); ++v) dfs(v); std::reverse(vs.begin(), vs.end()); for (int i = 0; i < (int)graph.size(); ++i) id[vs[i]] = i; } void dfs(int v) { if (visited[v]) return; visited[v] = true; for (const auto& e : graph[v]) dfs(e.dst); vs.push_back(v); } }; #line 2 "combined.cpp" #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif #include <utility> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #line 155 "combined.cpp" namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #include <iostream> #line 512 "combined.cpp" #include <queue> template <class Cost> std::vector<bool> bfs(const Graph<Cost>& graph, int s) { std::vector<bool> dist(graph.size(), false); dist[s] = true; std::queue<int> que; que.push(s); while (!que.empty()) { auto v = que.front(); que.pop(); for (const auto& e : graph[v]) { if (dist[e.dst]) continue; dist[e.dst] = true; que.push(e.dst); } } return dist; } using namespace std; using lint = long long; using mint = atcoder::modint1000000007; void solve() { int n, m; cin >> n >> m; Graph<pair<lint, lint>> graph(n + 1), rgraph(n + 1); while (m--) { int u, v; lint l, a; cin >> u >> v >> l >> a; graph.span(true, u, v, {l, a}); rgraph.span(true, v, u, {l, a}); } vector<bool> reach(n + 1); { auto ds0 = bfs(graph, 0); auto dsn = bfs(rgraph, n); for (int v = 0; v <= n; ++v) { reach[v] = (ds0[v] != -1 && dsn[v] != -1); } } if (!reach[0]) { cout << "0\n"; return; } Graph<pair<lint, lint>> ngraph(n + 1); for (int v = 0; v <= n; ++v) { if (!reach[v]) continue; for (auto e : graph[v]) { if (!reach[e.dst]) continue; ngraph[v].push_back(e); } } TopologicalSort ts(ngraph); vector<mint> sum(n + 1, 0), pat(n + 1, 0); pat[0] = 1; for (auto v : ts.vs) { for (auto e : ngraph[v]) { int u = e.dst; auto [l, a] = e.cost; if (ts.id[v] > ts.id[u]) { cout << "INF\n"; return; } sum[u] += (sum[v] + pat[v] * l) * a; pat[u] += pat[v] * a; } } cout << sum[n].val() << "\n"; } int main() { cin.tie(nullptr); ios::sync_with_stdio(false); solve(); return 0; }