結果

問題 No.1358 [Zelkova 2nd Tune *] 語るなら枚数を...
ユーザー NyaanNyaanNyaanNyaan
提出日時 2021-01-22 23:12:09
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 15,722 bytes
コンパイル時間 2,611 ms
コンパイル使用メモリ 277,160 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-08 17:52:16
合計ジャッジ時間 11,661 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 9 ms
5,248 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *  date : 2021-01-22 23:11:55
 */

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <csetjmp>
#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <forward_list>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <locale>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <ratio>
#include <regex>
#include <set>
#include <sstream>
#include <stack>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <system_error>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <valarray>
#include <vector>

// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  T &x() { return first; }
  const T &x() const { return first; }
  U &y() { return second; }
  const U &y() const { return second; }

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}
template <typename T, size_t N>
void mem(T (&a)[N], int c) {
  memset(a, c, sizeof(T) * N);
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<T> reord(const vector<T> &v, const vector<T> &ord) {
  int N = v.size();
  vector<T> ret(N);
  for (int i = 0; i < N; i++) ret[i] = v[ord[i]];
  return ret;
};

template <typename T = int>
vector<T> mkiota(int N) {
  vector<T> ret(N);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
vector<int> mkinv(vector<T> &v, int max_val = -1) {
  if (max_val < (int)v.size()) max_val = v.size() - 1;
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

}  // namespace Nyaan

// bit operation
namespace Nyaan {

__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}

__attribute__((target("bmi"))) inline int lsb(const u64 &a) {
  return _tzcnt_u64(a);
}
__attribute__((target("bmi"))) inline int ctz(const u64 &a) {
  return _tzcnt_u64(a);
}

__attribute__((target("lzcnt"))) inline int msb(const u64 &a) {
  return 63 - _lzcnt_u64(a);
}
__attribute__((target("lzcnt"))) inline int clz64(const u64 &a) {
  return _lzcnt_u64(a);
}

template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  a ^= (gbit(a, i) == b ? 0 : (T(b) << i));
}

constexpr long long PW(int n) { return 1LL << n; }

constexpr long long MSK(int n) { return (1LL << n) - 1; }

}  // namespace Nyaan

// inout
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &... u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

void outr() {}
template <typename T, class... U, char sep = ' '>
void outr(const T &t, const U &... u) {
  cout << t;
  outr(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan

// debug
namespace DebugImpl {

template <typename U, typename = void>
struct is_specialize : false_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, typename U::iterator, void>::type>
    : true_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, decltype(U::first), void>::type>
    : true_type {};
template <typename U>
struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
};

void dump(const char& t) { cerr << t; }

void dump(const string& t) { cerr << t; }

template <typename U,
          enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
void dump(const U& t) {
  cerr << t;
}

template <typename T>
void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
  string res;
  if (t == Nyaan::inf) res = "inf";
  if (is_signed<T>::value)
    if (t == -Nyaan::inf) res = "-inf";
  if (sizeof(T) == 8) {
    if (t == Nyaan::infLL) res = "inf";
    if (is_signed<T>::value)
      if (t == -Nyaan::infLL) res = "-inf";
  }
  if (res.empty()) res = to_string(t);
  cerr << res;
}

template <typename T, typename U>
void dump(const pair<T, U>&);
template <typename T>
void dump(const pair<T*, int>&);

template <typename T>
void dump(const T& t,
          enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
  cerr << "[ ";
  for (auto it = t.begin(); it != t.end();) {
    dump(*it);
    cerr << (++it == t.end() ? "" : ", ");
  }
  cerr << " ]";
}

template <typename T, typename U>
void dump(const pair<T, U>& t) {
  cerr << "( ";
  dump(t.first);
  cerr << ", ";
  dump(t.second);
  cerr << " )";
}

template <typename T>
void dump(const pair<T*, int>& t) {
  cerr << "[ ";
  for (int i = 0; i < t.second; i++) {
    dump(t.first[i]);
    cerr << (i == t.second - 1 ? "" : ", ");
  }
  cerr << " ]";
}

void trace() { cerr << endl; }
template <typename Head, typename... Tail>
void trace(Head&& head, Tail&&... tail) {
  cerr << " ";
  dump(head);
  if (sizeof...(tail) != 0) cerr << ",";
  trace(forward<Tail>(tail)...);
}

}  // namespace DebugImpl

#ifdef NyaanDebug
#define trc(...)                            \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc(...)
#endif

// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define repc(i, a, cond) for (long long i = (a); (cond); i++)
#define enm(i, val, vec)                                  \
  for (long long i = 0; i < (long long)(vec).size(); i++) \
    if (auto& val = vec[i]; false)                        \
      ;                                                   \
    else

#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define inc(...)    \
  char __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }

#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }

//
using namespace Nyaan;


long long my_gcd(long long x, long long y) {
  long long z;
  if (x > y) swap(x, y);
  while (x) {
    x = y % (z = x);
    y = z;
  }
  return y;
}
long long my_lcm(long long x, long long y) {
  return 1LL * x / my_gcd(x, y) * y;
}
#define gcd my_gcd
#define lcm my_lcm

// totient function φ(N)=(1 ~ N , gcd(i,N) = 1)
// {0, 1, 1, 2, 4, 2, 6, 4, ... }
vector<int> EulersTotientFunction(int N) {
  vector<int> ret(N + 1, 0);
  for (int i = 0; i <= N; i++) ret[i] = i;
  for (int i = 2; i <= N; i++) {
    if (ret[i] == i)
      for (int j = i; j <= N; j += i) ret[j] = ret[j] / i * (i - 1);
  }
  return ret;
}

// Divisor ex) 12 -> {1, 2, 3, 4, 6, 12}
vector<long long> Divisor(long long N) {
  vector<long long> v;
  for (long long i = 1; i * i <= N; i++) {
    if (N % i == 0) {
      v.push_back(i);
      if (i * i != N) v.push_back(N / i);
    }
  }
  return v;
}

// Factorization
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N) {
  vector<pair<long long, int> > ret;
  for (long long p = 2; p * p <= N; p++)
    if (N % p == 0) {
      ret.emplace_back(p, 0);
      while (N % p == 0) N /= p, ret.back().second++;
    }
  if (N >= 2) ret.emplace_back(N, 1);
  return ret;
}

// Factorization with Prime Sieve
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N,
                                           const vector<long long> &prime) {
  vector<pair<long long, int> > ret;
  for (auto &p : prime) {
    if (p * p > N) break;
    if (N % p == 0) {
      ret.emplace_back(p, 0);
      while (N % p == 0) N /= p, ret.back().second++;
    }
  }
  if (N >= 2) ret.emplace_back(N, 1);
  return ret;
}

// modpow for mod < 2 ^ 31
long long modpow(long long a, long long n, long long mod) {
  a %= mod;
  long long ret = 1;
  while (n > 0) {
    if (n & 1) ret = ret * a % mod;
    a = a * a % mod;
    n >>= 1;
  }
  return ret % mod;
};

// Check if r is Primitive Root
bool isPrimitiveRoot(long long r, long long mod) {
  r %= mod;
  if (r == 0) return false;
  auto pf = PrimeFactors(mod - 1);
  for (auto &x : pf) {
    if (modpow(r, (mod - 1) / x.first, mod) == 1) return false;
  }
  return true;
}

// Get Primitive Root
long long PrimitiveRoot(long long mod) {
  if(mod == 2) return 1;
  long long ret = 1;
  while (isPrimitiveRoot(ret, mod) == false) ret++;
  return ret;
}

// Euler's phi function
long long phi(long long n) {
  auto pf = PrimeFactors(n);
  long long ret = n;
  for (auto p : pf) {
    ret /= p.first;
    ret *= (p.first - 1);
  }
  return ret;
}

// Extended Euclidean algorithm
// solve : ax + by = gcd(a, b)
// return : pair(x, y)
pair<long long, long long> extgcd(long long a, long long b) {
  if (b == 0) return make_pair(1, 0);
  long long x, y;
  tie(y, x) = extgcd(b, a % b);
  y -= a / b * x;
  return make_pair(x, y);
}

// Check if n is Square Number
// true : return d s.t. d * d == n
// false : return -1
long long SqrtInt(long long n) {
  if (n == 0 || n == 1) return n;
  long long d = (long long)sqrt(n) - 1;
  while (d * d < n) ++d;
  return (d * d == n) ? d : -1;
}

// return a number of n's digit
// zero ... return value if n = 0 (default -> 1)
int isDigit(long long n, int zero = 1) {
  if (n == 0) return zero;
  int ret = 0;
  while (n) {
    n /= 10;
    ret++;
  }
  return ret;
}


// ちょっと面白い
void q() {
  inl(N, K, H, T);
  if (N < K) swap(N, K);
  if (N < H) swap(N, H);
  auto g = gcd(K, H);
  K /= g, H /= g;
  ll ans = 0;
  rep(i, N + 1) {
    if (i * N > T) break;
    ll U = T - i * N;
    // K * x + H * y = U 数え上げ
    if (U % g != 0) continue;
    U /= g;
    auto [x, y] = extgcd(K, H);
    // K * x + H * y = 1
    // 全体をU倍
    x *= U, y *= U;
    // K * x + H * y = U
    if (x < 0) swap(K, H), swap(x, y);
    trc(i, x, K, y, H, U);
    assert(x * K + y * H == U);
    // yが負 非負にしたい!
    if (y < 0) {
      ll quo = -y / K + !!(y % K);
      y += quo * K;
      x -= quo * H;
    }
    if (y >= K) {
      ll quo = y / K;
      y -= quo * K;
      x += quo * H;
    }
    trc(i, x, K, y, H, U);
    assert(x * K + y * H == U);
    if (x >= 0) ans += 1 + x / H;
    trc(ans);
  }
  out(ans);
}

void Nyaan::solve() {
  ini(T);
  rep(i, T) q();
}
0