結果
問題 | No.1358 [Zelkova 2nd Tune *] 語るなら枚数を... |
ユーザー | FF256grhy |
提出日時 | 2021-01-22 23:23:41 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 7,579 bytes |
コンパイル時間 | 2,162 ms |
コンパイル使用メモリ | 197,948 KB |
最終ジャッジ日時 | 2024-11-15 05:04:25 |
合計ジャッジ時間 | 2,789 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In instantiation of 'T in() [with T = std::array<long long int, 3>]': main.cpp:57:67: required from 'auto ain() [with T = long long int; long unsigned int N = 3]' main.cpp:148:22: required from here main.cpp:48:43: error: no match for 'operator>>' (operand types are 'std::basic_istream<char>' and 'std::array<long long int, 3>') 48 | template<typename T> T in() { T a; (* IS) >> a; return a; } | ~~~~~~~^~~~ In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/sstream:38, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/complex:45, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ccomplex:39, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:54, from main.cpp:1: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/istream:120:7: note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(__istream_type& (*)(__istream_type&)) [with _CharT = char; _Traits = std::char_traits<char>; __istream_type = std::basic_istream<char>]' 120 | operator>>(__istream_type& (*__pf)(__istream_type&)) | ^~~~~~~~ /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/istream:120:36: note: no known conversion for argument 1 from 'std::array<long long int, 3>' to 'std::basic_istream<char>::__istream_type& (*)(std::basic_istream<char>::__istream_type&)' {aka 'std::basic_istream<char>& (*)(std::basic_istream<char>&)'} 120 | operator>>(__istream_type& (*__pf)(__istream_type&)) | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/istream:124:7: note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(__ios_type& (
ソースコード
#include <bits/stdc++.h> using namespace std; using LL = long long int; #define incII(i, l, r) for(LL i = (l) ; i <= (r); i++) #define incIX(i, l, r) for(LL i = (l) ; i < (r); i++) #define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++) #define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++) #define decII(i, l, r) for(LL i = (r) ; i >= (l); i--) #define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--) #define decXI(i, l, r) for(LL i = (r) ; i > (l); i--) #define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--) #define inc(i, n) incIX(i, 0, n) #define dec(i, n) decIX(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec1(i, n) decII(i, 1, n) auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); }; auto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); }; auto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); }; auto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); }; auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); }; auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); }; auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); }; auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); }; #define PB push_back #define EB emplace_back #define MP make_pair #define MT make_tuple #define FI first #define SE second #define FR front() #define BA back() #define ALL(c) c.begin(), c.end() #define RALL(c) c.rbegin(), c.rend() #define RV(c) reverse(ALL(c)) #define SC static_cast #define SI(c) SC<int>(c.size()) #define SL(c) SC<LL >(c.size()) #define RF(e, c) for(auto & e: c) #define SF(c, ...) for(auto & [__VA_ARGS__]: c) #define until(e) while(! (e)) #define if_not(e) if(! (e)) #define ef else if #define UR assert(false) auto * IS = & cin; auto * OS = & cout; array<string, 3> SEQ = { "", " ", "" }; // input template<typename T> T in() { T a; (* IS) >> a; return a; } // input: tuple template<int I, typename U> void tin_(istream & is, U & t) { if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); } } template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; } template<typename ... T> auto tin() { return in<tuple<T ...>>(); } // input: array template<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; } template<typename T, size_t N> auto ain() { return in<array<T, N>>(); } // input: multi-dimensional vector template<typename T> T vin() { T v; (* IS) >> v; return v; } template<typename T, typename N, typename ... M> auto vin(N n, M ... m) { vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v; } // input: multi-column (tuple<vector>) template<typename U, int I> void colin_([[maybe_unused]] U & t) { } template<typename U, int I, typename A, typename ... B> void colin_(U & t) { get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t); } template<typename ... T> auto colin(int n) { tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t; } // output void out_([[maybe_unused]] string s) { } template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; } template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); } auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; }; auto out = [](auto ... a) { outF("", " " , "\n", a ...); }; auto outS = [](auto ... a) { outF("", " " , " " , a ...); }; auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); }; auto outN = [](auto ... a) { outF("", "" , "" , a ...); }; // output: multi-dimensional vector template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) { os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]); } template<typename T> void vout_(T && v) { (* OS) << v; } template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) { inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); } } template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; } template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; } // ---- ---- template<int N> class DynModInt { private: static LL M; LL v; pair<LL, LL> ext_gcd(LL a, LL b) { if(b == 0) { assert(a == 1); return { 1, 0 }; } auto p = ext_gcd(b, a % b); return { p.SE, p.FI - (a / b) * p.SE }; } public: DynModInt() { v = 0; } DynModInt(LL vv) { assert(M > 0); v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } } static LL & mod() { return M; } LL val() { return v; } DynModInt inv() { return ext_gcd(M, v).SE; } DynModInt exp(LL b) { DynModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; } while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; } return p; } friend bool operator< (DynModInt a, DynModInt b) { return (a.v < b.v); } friend bool operator> (DynModInt a, DynModInt b) { return (a.v > b.v); } friend bool operator<=(DynModInt a, DynModInt b) { return (a.v <= b.v); } friend bool operator>=(DynModInt a, DynModInt b) { return (a.v >= b.v); } friend bool operator==(DynModInt a, DynModInt b) { return (a.v == b.v); } friend bool operator!=(DynModInt a, DynModInt b) { return (a.v != b.v); } friend DynModInt operator+ (DynModInt a ) { return DynModInt(+a.v); } friend DynModInt operator- (DynModInt a ) { return DynModInt(-a.v); } friend DynModInt operator+ (DynModInt a, DynModInt b) { return DynModInt(a.v + b.v); } friend DynModInt operator- (DynModInt a, DynModInt b) { return DynModInt(a.v - b.v); } friend DynModInt operator* (DynModInt a, DynModInt b) { return DynModInt(a.v * b.v); } friend DynModInt operator/ (DynModInt a, DynModInt b) { return a * b.inv(); } friend DynModInt operator^ (DynModInt a, LL b) { return a.exp(b); } friend DynModInt & operator+=(DynModInt & a, DynModInt b) { return (a = a + b); } friend DynModInt & operator-=(DynModInt & a, DynModInt b) { return (a = a - b); } friend DynModInt & operator*=(DynModInt & a, DynModInt b) { return (a = a * b); } friend DynModInt & operator/=(DynModInt & a, DynModInt b) { return (a = a / b); } friend DynModInt & operator^=(DynModInt & a, LL b) { return (a = a ^ b); } friend istream & operator>>(istream & s, DynModInt & b) { s >> b.v; b = DynModInt(b.v); return s; } friend ostream & operator<<(ostream & s, DynModInt b) { return (s << b.v); } }; template<int N> LL DynModInt<N>::M = 0; // ---- const int MOD = 1'000'000'007; using DMI = DynModInt<0>; auto fl = [](auto a, auto b) { assert(b != 0); return a / b - (a % b != 0 && ((a >= 0) != (b >= 0)) ? 1 : 0); }; auto ce = [](auto a, auto b) { assert(b != 0); return a / b + (a % b != 0 && ((a >= 0) == (b >= 0)) ? 1 : 0); }; int main() { auto t = in<int>(); inc(tt, t) { auto A = ain<LL, 3>(); auto s = in<LL>(); sort(ALL(A)); auto [a, b, c] = A; LL g = gcd(a, b); a /= g; b /= g; DMI::mod() = a; LL b_inv = (DMI(1) / b).val(); LL ans = 0; incII(i, 0, s / c) { if((s - c * i) % g != 0) { continue; } LL x = (s - c * i) / g; LL y = x * b_inv % a; ans += max(fl(x - y * b, a * b) + 1, 0LL); } out(ans % MOD); } }