結果
問題 | No.1364 [Renaming] Road to Cherry from Zelkova |
ユーザー | outline |
提出日時 | 2021-01-22 23:27:05 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 200 ms / 2,500 ms |
コード長 | 4,511 bytes |
コンパイル時間 | 2,436 ms |
コンパイル使用メモリ | 151,528 KB |
最終ジャッジ日時 | 2025-01-18 06:10:48 |
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 45 |
ソースコード
#include <iostream> #include <vector> #include <algorithm> #include <cmath> #include <queue> #include <string> #include <map> #include <set> #include <stack> #include <tuple> #include <deque> #include <array> #include <numeric> #include <bitset> #include <iomanip> #include <cassert> #include <chrono> #include <random> #include <limits> #include <iterator> #include <functional> #include <sstream> #include <fstream> #include <complex> #include <cstring> #include <unordered_map> #include <unordered_set> using namespace std; using ll = long long; constexpr int INF = 1001001001; constexpr int mod = 1000000007; // constexpr int mod = 998244353; template<class T> inline bool chmax(T& x, T y){ if(x < y){ x = y; return true; } return false; } template<class T> inline bool chmin(T& x, T y){ if(x > y){ x = y; return true; } return false; } struct mint { int x; mint() : x(0) {} mint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} mint& operator+=(const mint& p){ if((x += p.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint& p){ if((x -= p.x) < 0) x += mod; return *this; } mint& operator*=(const mint& p){ x = (int)(1LL * x * p.x % mod); return *this; } mint& operator/=(const mint& p){ *this *= p.inverse(); return *this; } mint operator-() const { return mint(-x); } mint operator+(const mint& p) const { return mint(*this) += p; } mint operator-(const mint& p) const { return mint(*this) -= p; } mint operator*(const mint& p) const { return mint(*this) *= p; } mint operator/(const mint& p) const { return mint(*this) /= p; } bool operator==(const mint& p) const { return x == p.x; } bool operator!=(const mint& p) const { return x != p.x; } mint pow(int64_t n) const { mint res = 1, mul = x; while(n > 0){ if(n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } mint inverse() const { return pow(mod - 2); } friend ostream& operator<<(ostream& os, const mint& p){ return os << p.x; } friend istream& operator>>(istream& is, mint& p){ int64_t val; is >> val; p = mint(val); return is; } }; int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); int N, M; cin >> N >> M; using edge = tuple<int, int, int>; vector<vector<edge>> g(N + 1), rg(N + 1); for(int i = 0; i < M; ++i){ int u, v, l, a; cin >> u >> v >> l >> a; g[u].emplace_back(v, l, a); rg[v].emplace_back(u, l, a); } vector<bool> from0(N + 1), fromN(N + 1), visited(N + 1); auto dfs = [&](auto&& self, vector<vector<edge>>& G, vector<bool>& f, int cur) -> void { visited[cur] = true; f[cur] = true; for(auto [nxt, cost, weight] : G[cur]){ if(!visited[nxt]) self(self, G, f, nxt); } }; dfs(dfs, g, from0, 0); visited.assign(N + 1, false); dfs(dfs, rg, fromN, N); int V = 0; vector<bool> flag(N + 1); for(int i = 0; i <= N; ++i){ flag[i] = from0[i] && fromN[i]; V += flag[i]; } vector<int> indeg(N + 1); for(int from = 0; from <= N; ++from){ if(!flag[from]) continue; for(auto [to, cost, weight] : g[from]){ if(flag[to]) indeg[to] += 1; } } queue<int> que; for(int i = 0; i <= N; ++i){ if(flag[i] && indeg[i] == 0) que.emplace(i); } vector<int> topological_order; while(!que.empty()){ int from = que.front(); que.pop(); topological_order.emplace_back(from); for(auto [to, cost, weight] : g[from]){ if(!flag[to]) continue; if(--indeg[to] == 0) que.emplace(to); } } if((int)topological_order.size() != V){ cout << "INF\n"; return 0; } vector<mint> dp(N + 1), dp2(N + 1); dp2[0] = 1; for(int from : topological_order){ for(auto [to, cost, weight] : g[from]){ if(!flag[to]) continue; dp2[to] += dp2[from] * weight; } } for(int from : topological_order){ for(auto [to, cost, weight] : g[from]){ if(!flag[to]) continue; dp[to] += (dp[from] + dp2[from] * cost) * weight; } } cout << dp[N] << endl; return 0; }