結果
| 問題 |
No.1364 [Renaming] Road to Cherry from Zelkova
|
| コンテスト | |
| ユーザー |
kaikey
|
| 提出日時 | 2021-01-22 23:28:17 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,647 bytes |
| コンパイル時間 | 3,116 ms |
| コンパイル使用メモリ | 212,428 KB |
| 最終ジャッジ日時 | 2025-01-18 06:11:48 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 42 WA * 3 |
ソースコード
#include <bits/stdc++.h>
#include <random>
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef pair<lint, lint> plint; typedef pair<double long, double long> pld;
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
#define fi first
#define se second
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
for (T& in : v) is >> in;
return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint ceil(lint a, lint b) { return (a + b - 1) / b; }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.fi - b.fi) * abs(a.fi - b.fi) + abs(a.se - b.se) * abs(a.se - b.se); }
lint m_dist(plint a, plint b) { return abs(a.fi - b.fi) + abs(a.se - b.se); }
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD = 1e9 + 7, INF = 1e9 + 1;
lint dx[8] = { 1, 0, -1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
lint from, to;
lint cost;
Edge(lint u, lint v, lint c) {
cost = c;
from = u;
to = v;
}
bool operator<(const Edge& e) const {
return cost < e.cost;
}
};
struct WeightedEdge {
lint to;
lint cost;
WeightedEdge(lint v, lint c = 1) {
to = v;
cost = c;
}
bool operator<(const WeightedEdge& e) const {
return cost < e.cost;
}
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<lint, plint> tlint;
typedef pair<plint, plint> qlint;
typedef pair<string, lint> valstring;
template <std::int_fast64_t Modulus>
class modint
{
using u64 = std::int_fast64_t;
public:
u64 a;
constexpr modint(const u64 x = 0) noexcept : a(x% Modulus) {}
constexpr u64& value() noexcept { return a; }
constexpr const u64& value() const noexcept { return a; }
constexpr modint operator+(const modint rhs) const noexcept
{
return modint(*this) += rhs;
}
constexpr modint operator-(const modint rhs) const noexcept
{
return modint(*this) -= rhs;
}
constexpr modint operator*(const modint rhs) const noexcept
{
return modint(*this) *= rhs;
}
constexpr modint operator/(const modint rhs) const noexcept
{
return modint(*this) /= rhs;
}
constexpr modint& operator+=(const modint rhs) noexcept
{
a += rhs.a;
if (a >= Modulus)
{
a -= Modulus;
}
return *this;
}
constexpr modint& operator-=(const modint rhs) noexcept
{
if (a < rhs.a)
{
a += Modulus;
}
a -= rhs.a;
return *this;
}
constexpr modint& operator*=(const modint rhs) noexcept
{
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint& operator/=(modint rhs) noexcept
{
u64 exp = Modulus - 2;
while (exp)
{
if (exp % 2)
{
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
};
typedef modint<MOD> ModInt;
ModInt mod_pow(ModInt x, lint n) {
ModInt ret = 1;
while (n > 0) {
if (n & 1) (ret *= x);
(x *= x);
n >>= 1;
}
return ret;
}
ModInt func[200000];
void funcinit(int N)
{
func[0] = 1;
for (int i = 1; i <= N; i++)
{
func[i] = func[i - 1] * i;
}
}
ModInt comb(ModInt n, ModInt r)
{
if (n.a <= 0 || n.a < r.a)
{
return 1;
}
return func[n.a] / (func[r.a] * func[(n - r).a]);
}
struct Topological_Sort {
public:
Topological_Sort(int _n) : G(_n, Vl()), indegree(_n, 0), N(_n) {}
void add_edge(int u, int v) {
G[u].push_back(v);
indegree[v]++;
}
Vl get() {
Vl sorted_vertices;
Vl tmp_indegree = indegree;
queue<int> que;
REP(i, N) {
if (tmp_indegree[i] == 0) que.push(i);
}
while (!que.empty()) {
int v = que.front(); que.pop();
REP(i, SZ(G[v])) {
int u = G[v][i];
tmp_indegree[u]--;
if (tmp_indegree[u] == 0) que.push(u);
}
sorted_vertices.push_back(v);
}
return sorted_vertices;
}
private:
VVl G;
Vl indegree;
int N;
};
lint N, M, u, v, l, a;
int main() {
cin >> N >> M;
VVl to(N + 1, Vl());
V<V<tlint>> rev(N + 1, V<tlint>());
Topological_Sort topo(N + 1);
REP(i, M) {
cin >> u >> v >> l >> a;
topo.add_edge(u, v);
rev[v].push_back({ u, {l, a} });
}
auto vec = topo.get();
if (SZ(vec) != N + 1) {
cout << "INF" << endk;
}
else {
reverse(ALL(vec));
V<ModInt> dp(N + 1);
V<ModInt> cnt(N + 1, 0);
cnt[N] = 1;
for (lint v : vec) {
for (auto nxt : rev[v]) {
dp[nxt.first] += dp[v] * nxt.second.second + (cnt[v] * nxt.second.second) * nxt.second.first;
cnt[nxt.first] += cnt[v] * nxt.second.second;
}
}
ModInt ans = 0;
cout << dp[0].a << endk;
}
}
kaikey