結果
問題 | No.1364 [Renaming] Road to Cherry from Zelkova |
ユーザー | 👑 emthrm |
提出日時 | 2021-01-22 23:40:07 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,669 bytes |
コンパイル時間 | 2,357 ms |
コンパイル使用メモリ | 231,832 KB |
実行使用メモリ | 39,000 KB |
最終ジャッジ日時 | 2024-06-08 18:51:29 |
合計ジャッジ時間 | 7,756 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | WA | - |
testcase_08 | AC | 7 ms
5,376 KB |
testcase_09 | WA | - |
testcase_10 | AC | 7 ms
5,376 KB |
testcase_11 | AC | 5 ms
5,376 KB |
testcase_12 | WA | - |
testcase_13 | AC | 73 ms
21,192 KB |
testcase_14 | AC | 94 ms
17,792 KB |
testcase_15 | AC | 91 ms
20,896 KB |
testcase_16 | AC | 66 ms
14,336 KB |
testcase_17 | AC | 38 ms
17,344 KB |
testcase_18 | AC | 118 ms
27,928 KB |
testcase_19 | AC | 121 ms
27,916 KB |
testcase_20 | AC | 118 ms
27,808 KB |
testcase_21 | AC | 120 ms
27,936 KB |
testcase_22 | AC | 119 ms
27,944 KB |
testcase_23 | AC | 29 ms
11,776 KB |
testcase_24 | AC | 27 ms
5,504 KB |
testcase_25 | AC | 98 ms
22,144 KB |
testcase_26 | AC | 156 ms
29,952 KB |
testcase_27 | AC | 113 ms
21,504 KB |
testcase_28 | AC | 67 ms
17,408 KB |
testcase_29 | AC | 105 ms
20,352 KB |
testcase_30 | AC | 67 ms
17,536 KB |
testcase_31 | AC | 42 ms
14,208 KB |
testcase_32 | AC | 87 ms
17,024 KB |
testcase_33 | AC | 155 ms
27,392 KB |
testcase_34 | AC | 146 ms
28,928 KB |
testcase_35 | AC | 87 ms
14,976 KB |
testcase_36 | AC | 84 ms
13,824 KB |
testcase_37 | AC | 90 ms
12,672 KB |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | AC | 85 ms
39,000 KB |
testcase_44 | AC | 44 ms
24,184 KB |
testcase_45 | AC | 76 ms
38,000 KB |
testcase_46 | AC | 5 ms
7,936 KB |
testcase_47 | AC | 2 ms
5,376 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int MOD> struct MInt { unsigned val; MInt(): val(0) {} MInt(long long x) : val(x >= 0 ? x % MOD : x % MOD + MOD) {} static int get_mod() { return MOD; } static void set_mod(int divisor) { assert(divisor == MOD); } MInt pow(long long exponent) const { MInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } MInt &operator+=(const MInt &x) { if((val += x.val) >= MOD) val -= MOD; return *this; } MInt &operator-=(const MInt &x) { if((val += MOD - x.val) >= MOD) val -= MOD; return *this; } MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % MOD; return *this; } MInt &operator/=(const MInt &x) { // assert(std::__gcd(static_cast<int>(x.val), MOD) == 1); unsigned a = x.val, b = MOD; int u = 1, v = 0; while (b) { unsigned tmp = a / b; std::swap(a -= tmp * b, b); std::swap(u -= tmp * v, v); } return *this *= u; } bool operator==(const MInt &x) const { return val == x.val; } bool operator!=(const MInt &x) const { return val != x.val; } bool operator<(const MInt &x) const { return val < x.val; } bool operator<=(const MInt &x) const { return val <= x.val; } bool operator>(const MInt &x) const { return val > x.val; } bool operator>=(const MInt &x) const { return val >= x.val; } MInt &operator++() { if (++val == MOD) val = 0; return *this; } MInt operator++(int) { MInt res = *this; ++*this; return res; } MInt &operator--() { val = (val == 0 ? MOD : val) - 1; return *this; } MInt operator--(int) { MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(val ? MOD - val : 0); } MInt operator+(const MInt &x) const { return MInt(*this) += x; } MInt operator-(const MInt &x) const { return MInt(*this) -= x; } MInt operator*(const MInt &x) const { return MInt(*this) *= x; } MInt operator/(const MInt &x) const { return MInt(*this) /= x; } friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; } friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; } }; namespace std { template <int MOD> MInt<MOD> abs(const MInt<MOD> &x) { return x; } } template <int MOD> struct Combinatorics { using ModInt = MInt<MOD>; int val; // "val!" and "mod" must be disjoint. std::vector<ModInt> fact, fact_inv, inv; Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) { fact[0] = 1; for (int i = 1; i <= val; ++i) fact[i] = fact[i - 1] * i; fact_inv[val] = ModInt(1) / fact[val]; for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i; for (int i = 1; i <= val; ++i) inv[i] = fact[i - 1] * fact_inv[i]; } ModInt nCk(int n, int k) const { if (n < 0 || n < k || k < 0) return 0; assert(n <= val && k <= val); return fact[n] * fact_inv[k] * fact_inv[n - k]; } ModInt nPk(int n, int k) const { if (n < 0 || n < k || k < 0) return 0; assert(n <= val); return fact[n] * fact_inv[n - k]; } ModInt nHk(int n, int k) const { if (n < 0 || k < 0) return 0; return k == 0 ? 1 : nCk(n + k - 1, k); } }; using ModInt = MInt<MOD>; std::vector<int> topological_sort(const std::vector<std::vector<int>> &graph) { int n = graph.size(); std::vector<int> deg(n, 0); for (int i = 0; i < n; ++i) { for (int e : graph[i]) ++deg[e]; } std::queue<int> que; for (int i = 0; i < n; ++i) { if (deg[i] == 0) que.emplace(i); } std::vector<int> res; while (!que.empty()) { int ver = que.front(); que.pop(); res.emplace_back(ver); for (int e : graph[ver]) { if (--deg[e] == 0) que.emplace(e); } } return res.size() == n ? res : std::vector<int>(); } int main() { int n, m; cin >> n >> m; ++n; vector<int> u(m), v(m), l(m), a(m); REP(i, m) cin >> u[i] >> v[i] >> l[i] >> a[i]; vector<vector<int>> graph(n), rev(n); REP(i, m) { graph[u[i]].emplace_back(i); rev[v[i]].emplace_back(i); } vector<bool> reachn(n, false); reachn[n - 1] = true; queue<int> que({n - 1}); while (!que.empty()) { int ver = que.front(); que.pop(); for (int id : rev[ver]) { if (!reachn[u[id]]) { reachn[u[id]] = true; que.emplace(u[id]); } } } if (!reachn[0]) { cout << 0 << '\n'; return 0; } vector<bool> reach0(n, false); reach0[0] = true; vector<vector<int>> dag(n), dag_r(n); vector<map<int, pair<ll, ModInt>>> g(n); que.emplace(0); while (!que.empty()) { int ver = que.front(); que.pop(); for (int id : graph[ver]) { if (reachn[v[id]]) { dag[ver].emplace_back(v[id]); dag_r[v[id]].emplace_back(ver); g[ver][v[id]].first += a[id]; g[ver][v[id]].second += 1LL * a[id] * l[id]; if (!reach0[v[id]]) { reach0[v[id]] = true; que.emplace(v[id]); } } } } assert(reach0[n - 1]); vector<int> ts = topological_sort(dag); if (ts.empty()) { cout << "INF\n"; return 0; } vector<ModInt> dp0(n, 0), dpn(n, 0); dp0[0] = 1; REP(_, n) { int i = ts[_]; for (int e : dag[i]) dp0[e] += dp0[i] * g[i][e].first; } // REP(i, n) cout << dp0[i] << " \n"[i + 1 == n]; dpn[n - 1] = 1; for (int _ = n - 1; _ >= 0; --_) { int i = ts[_]; for (int e : dag_r[i]) dpn[e] += dpn[i] * g[e][i].first; } // REP(i, n) cout << dpn[i] << " \n"[i + 1 == n]; ModInt ans = 0; REP(i, n) { sort(ALL(dag[i])); dag[i].erase(unique(ALL(dag[i])), dag[i].end()); for (int e : dag[i]) ans += dp0[i] * dpn[e] * g[i][e].second; } cout << ans << '\n'; return 0; }