結果

問題 No.1364 [Renaming] Road to Cherry from Zelkova
ユーザー MisterMister
提出日時 2021-01-22 23:42:19
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 156 ms / 2,500 ms
コード長 17,308 bytes
コンパイル時間 1,533 ms
コンパイル使用メモリ 100,984 KB
実行使用メモリ 33,248 KB
最終ジャッジ日時 2024-06-09 07:34:41
合計ジャッジ時間 6,372 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,812 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 1 ms
6,944 KB
testcase_07 AC 1 ms
6,940 KB
testcase_08 AC 7 ms
6,944 KB
testcase_09 AC 4 ms
6,944 KB
testcase_10 AC 7 ms
6,940 KB
testcase_11 AC 7 ms
6,940 KB
testcase_12 AC 8 ms
6,940 KB
testcase_13 AC 85 ms
20,772 KB
testcase_14 AC 112 ms
22,656 KB
testcase_15 AC 112 ms
23,936 KB
testcase_16 AC 85 ms
17,664 KB
testcase_17 AC 43 ms
14,464 KB
testcase_18 AC 140 ms
28,652 KB
testcase_19 AC 136 ms
28,656 KB
testcase_20 AC 132 ms
28,660 KB
testcase_21 AC 132 ms
28,520 KB
testcase_22 AC 134 ms
28,688 KB
testcase_23 AC 29 ms
10,496 KB
testcase_24 AC 27 ms
9,728 KB
testcase_25 AC 92 ms
22,784 KB
testcase_26 AC 156 ms
32,640 KB
testcase_27 AC 98 ms
25,216 KB
testcase_28 AC 61 ms
17,408 KB
testcase_29 AC 86 ms
24,192 KB
testcase_30 AC 67 ms
17,792 KB
testcase_31 AC 42 ms
12,800 KB
testcase_32 AC 66 ms
21,376 KB
testcase_33 AC 132 ms
30,208 KB
testcase_34 AC 122 ms
29,184 KB
testcase_35 AC 98 ms
17,664 KB
testcase_36 AC 89 ms
17,280 KB
testcase_37 AC 60 ms
18,688 KB
testcase_38 AC 81 ms
24,320 KB
testcase_39 AC 82 ms
24,320 KB
testcase_40 AC 85 ms
24,192 KB
testcase_41 AC 83 ms
24,320 KB
testcase_42 AC 82 ms
24,192 KB
testcase_43 AC 66 ms
33,248 KB
testcase_44 AC 41 ms
19,920 KB
testcase_45 AC 68 ms
33,140 KB
testcase_46 AC 5 ms
7,936 KB
testcase_47 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Graph/topological_sort.hpp"

#line 2 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Graph/graph.hpp"

#include <vector>

template <class Cost = int>
struct Edge {
    int src, dst;
    Cost cost;

    Edge() = default;
    Edge(int src, int dst, Cost cost = 1)
        : src(src), dst(dst), cost(cost){};

    bool operator<(const Edge<Cost>& e) const { return cost < e.cost; }
    bool operator>(const Edge<Cost>& e) const { return cost > e.cost; }
};

template <class Cost = int>
struct Graph : public std::vector<std::vector<Edge<Cost>>> {
    using std::vector<std::vector<Edge<Cost>>>::vector;

    void span(bool direct, int src, int dst, Cost cost = 1) {
        (*this)[src].emplace_back(src, dst, cost);
        if (!direct) (*this)[dst].emplace_back(dst, src, cost);
    }
};
#line 4 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Graph/topological_sort.hpp"

#include <algorithm>

template <class Cost = int>
struct TopologicalSort {
    Graph<Cost> graph;
    std::vector<bool> visited;
    std::vector<int> vs, id;

    explicit TopologicalSort(const Graph<Cost>& graph)
        : graph(graph), visited(graph.size(), false), id(graph.size()) {
        for (int v = 0; v < (int)graph.size(); ++v) dfs(v);
        std::reverse(vs.begin(), vs.end());

        for (int i = 0; i < (int)graph.size(); ++i) id[vs[i]] = i;
    }

    void dfs(int v) {
        if (visited[v]) return;
        visited[v] = true;
        for (const auto& e : graph[v]) dfs(e.dst);
        vs.push_back(v);
    }
};
#line 2 "combined.cpp"

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#line 155 "combined.cpp"

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

#include <iostream>
#line 512 "combined.cpp"
#include <queue>
#line 514 "combined.cpp"

template <class Cost>
std::vector<bool> bfs(const Graph<Cost>& graph, int s) {
    std::vector<bool> dist(graph.size(), false);
    dist[s] = true;
    std::queue<int> que;
    que.push(s);

    while (!que.empty()) {
        auto v = que.front();
        que.pop();

        for (const auto& e : graph[v]) {
            if (dist[e.dst]) continue;
            dist[e.dst] = true;
            que.push(e.dst);
        }
    }

    return dist;
}

using namespace std;
using lint = long long;
using mint = atcoder::modint1000000007;

void solve() {
    int n, m;
    cin >> n >> m;

    Graph<pair<lint, lint>> graph(n + 1), rgraph(n + 1);
    while (m--) {
        int u, v;
        lint l, a;
        cin >> u >> v >> l >> a;

        graph.span(true, u, v, {l, a});
        rgraph.span(true, v, u, {l, a});
    }

    vector<bool> reach(n + 1);
    {
        auto ds0 = bfs(graph, 0);
        auto dsn = bfs(rgraph, n);
        for (int v = 0; v <= n; ++v) {
            reach[v] = (ds0[v] && dsn[v]);
        }
    }

    if (!reach[0]) {
        cout << "0\n";
        return;
    }

    Graph<pair<lint, lint>> ngraph(n + 1);
    for (int v = 0; v <= n; ++v) {
        if (!reach[v]) continue;

        for (auto e : graph[v]) {
            if (!reach[e.dst]) continue;
            ngraph[v].push_back(e);
        }
    }

    TopologicalSort ts(ngraph);

    vector<mint> sum(n + 1, 0), pat(n + 1, 0);
    pat[0] = 1;

    for (auto v : ts.vs) {
        if (!reach[v]) assert(ngraph[v].empty());

        for (auto e : ngraph[v]) {
            int u = e.dst;
            auto [l, a] = e.cost;
            assert(reach[u]);

            if (ts.id[v] > ts.id[u]) {
                cout << "INF\n";
                return;
            }

            sum[u] += (sum[v] + pat[v] * l) * a;
            pat[u] += pat[v] * a;
        }
    }

    cout << sum[n].val() << "\n";
}

int main() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);

    solve();

    return 0;
}
0