結果
問題 | No.1358 [Zelkova 2nd Tune *] 語るなら枚数を... |
ユーザー | kaikey |
提出日時 | 2021-01-23 00:45:12 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,081 bytes |
コンパイル時間 | 2,308 ms |
コンパイル使用メモリ | 206,600 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-09 05:55:46 |
合計ジャッジ時間 | 4,180 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,816 KB |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
ソースコード
#include <bits/stdc++.h> #include <random> using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef pair<lint, lint> plint; typedef pair<double long, double long> pld; #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((lint)(x).size()) #define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i) #define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) #define endk '\n' #define fi first #define se second struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; template<class T> auto add = [](T a, T b) -> T { return a + b; }; template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); }; template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); }; template<class T> using V = vector<T>; using Vl = V<lint>; using VVl = V<Vl>; template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) { for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : ""); return os; } template< typename T >istream& operator>>(istream& is, vector< T >& v) { for (T& in : v) is >> in; return is; } template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); } lint ceil(lint a, lint b) { return (a + b - 1) / b; } lint digit(lint a) { return (lint)log10(a); } lint e_dist(plint a, plint b) { return abs(a.fi - b.fi) * abs(a.fi - b.fi) + abs(a.se - b.se) * abs(a.se - b.se); } lint m_dist(plint a, plint b) { return abs(a.fi - b.fi) + abs(a.se - b.se); } void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); } const lint MOD = 1e9 + 7, INF = 1e9 + 1; lint dx[8] = { 1, 0, -1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 }; bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; } struct Edge { lint from, to; lint cost; Edge(lint u, lint v, lint c) { cost = c; from = u; to = v; } bool operator<(const Edge& e) const { return cost < e.cost; } }; struct WeightedEdge { lint to; lint cost; WeightedEdge(lint v, lint c = 1) { to = v; cost = c; } bool operator<(const WeightedEdge& e) const { return cost < e.cost; } }; using WeightedGraph = V<V<WeightedEdge>>; typedef pair<lint, plint> tlint; typedef pair<plint, plint> qlint; typedef pair<string, lint> valstring; template <std::int_fast64_t Modulus> class modint { using u64 = std::int_fast64_t; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(x% Modulus) {} constexpr u64& value() noexcept { return a; } constexpr const u64& value() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint& operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint& operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint& operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint& operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } }; typedef modint<MOD> ModInt; ModInt mod_pow(ModInt x, lint n) { ModInt ret = 1; while (n > 0) { if (n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } ModInt func[200000]; void funcinit(int N) { func[0] = 1; for (int i = 1; i <= N; i++) { func[i] = func[i - 1] * i; } } ModInt comb(ModInt n, ModInt r) { if (n.a <= 0 || n.a < r.a) { return 1; } return func[n.a] / (func[r.a] * func[(n - r).a]); } long long extGCD(long long a, long long b, long long& x, long long& y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extGCD(b, a % b, y, x); y -= a / b * x; return d; } lint T, A[3], Y; int main() { cin >> T; while (T--) { REP(i, 3) cin >> A[i]; cin >> Y; sort(A, A + 3); ModInt ans = 0; lint x, y, _g = gcd(A[1], A[0]); A[1] /= _g; A[0] /= _g; extGCD(A[1], A[0], x, y); REP(k, Y / A[2] + 1) { lint rest = Y - A[2] * k; if (rest % _g != 0) continue; lint mul = rest / _g; lint _x = x * mul, _y = y * mul; if (y < 0) { ans += _x / A[0] - ceil(-_y, A[1]) + 1; } else { ans += _x / A[0] + _y / A[1] + 1; } } cout << ans.a << endk; } }