結果

問題 No.1364 [Renaming] Road to Cherry from Zelkova
ユーザー lorent_kyoprolorent_kyopro
提出日時 2021-01-23 00:46:13
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 18,010 bytes
コンパイル時間 3,552 ms
コンパイル使用メモリ 226,656 KB
実行使用メモリ 25,876 KB
最終ジャッジ日時 2024-06-09 05:57:10
合計ジャッジ時間 9,283 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 AC 2 ms
5,376 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 AC 36 ms
9,344 KB
testcase_24 AC 30 ms
8,320 KB
testcase_25 AC 116 ms
17,920 KB
testcase_26 AC 186 ms
25,856 KB
testcase_27 AC 107 ms
20,992 KB
testcase_28 AC 75 ms
14,080 KB
testcase_29 AC 97 ms
20,224 KB
testcase_30 AC 77 ms
14,336 KB
testcase_31 AC 47 ms
11,008 KB
testcase_32 AC 73 ms
18,304 KB
testcase_33 AC 156 ms
24,192 KB
testcase_34 AC 154 ms
22,784 KB
testcase_35 AC 138 ms
18,048 KB
testcase_36 AC 117 ms
17,280 KB
testcase_37 AC 69 ms
15,488 KB
testcase_38 AC 92 ms
19,328 KB
testcase_39 AC 91 ms
19,584 KB
testcase_40 AC 89 ms
19,456 KB
testcase_41 AC 89 ms
19,584 KB
testcase_42 AC 91 ms
19,456 KB
testcase_43 AC 65 ms
24,264 KB
testcase_44 WA -
testcase_45 AC 67 ms
22,912 KB
testcase_46 AC 6 ms
7,936 KB
testcase_47 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (int)n; ++i)
#define rrep(i, n) for (int i = (int)n - 1; i >= 0; --i)
#define ALL(v) v.begin(), v.end()
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
using namespace std;
using ll = long long;
using ld = long double;
const array<string, 2> YESNO = {"NO", "YES"};
const array<string, 2> YesNo = {"No", "Yes"};
const array<string, 2> yesno = {"no", "yes"};
void YES(bool b = true) { cout << YESNO[b] << '\n'; }
void Yes(bool b = true) { cout << YesNo[b] << '\n'; }
void yes(bool b = true) { cout << yesno[b] << '\n'; }
template<typename T, typename U>
inline bool chmax(T& a, const U& b) {
    if (a < b){
        a = b;
        return true;
    }
    return false;
}
template<typename T, typename U>
inline bool chmin(T& a, const U& b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}
template<typename T>
void UNIQUE(vector<T>& v) {
    sort(v.begin(), v.end());
    v.erase(unique(v.begin(), v.end()));
}
template<typename T>
int lb(const vector<T> v, T x) {
    return distance(v.begin(), lower_bound(v.begin(), v.end(), x));
}
template<typename T>
int ub(const vector<T> v, T x) {
    return distance(v.begin(), upper_bound(v.begin(), v.end(), x));
}
/**
 * @brief 多次元 vector の作成
 * @author えびちゃん
 */
namespace detail {
    template<typename T, int N>
    auto make_vec(vector<int>& sizes, T const& x) {
        if constexpr (N == 1) {
            return vector(sizes[0], x);
        } else {
            int size = sizes[N-1];
            sizes.pop_back();
            return vector(size, make_vec<T, N-1>(sizes, x));
        }
    }
}
template<typename T, int N>
auto make_vec(int const(&sizes)[N], T const& x = T()) {
    vector<int> s(N);
    for (int i = 0; i < N; ++i) s[i] = sizes[N-i-1];
    return detail::make_vec<T, N>(s, x);
}
template<typename T>
ostream& operator<<(ostream& os, const vector<T>& v) {
    for (auto it = v.begin(); it != v.end(); ++it) {
        if (it == v.begin()) os << *it;
        else os << ' ' << *it;
    }
    return os;
}
template<typename T, typename U>
ostream& operator<<(ostream& os, const pair<T, U>& p) {
    os << p.first << ' ' << p.second;
    return os;
}
__attribute__((constructor))
void fast_io() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
}


#include <utility>

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

using namespace atcoder;
using mint = modint1000000007;
// using mint = modint998244353;

int main() {
    int n, m;
    cin >> n >> m;
    auto g = make_vec<tuple<ll, ll, ll>>({n+1, 0});
    auto rg = make_vec<tuple<ll, ll, ll>>({n+1, 0});

    rep(i, m) {
        ll u, v, l, a;
        cin >> u >> v >> l >> a;
        g[u].eb(v, l, a);
        rg[v].eb(u, l, a);
    }

    vector<bool> ok(n+1), rok(n+1);
    auto dfs = [&](auto self, int u) -> void {
        ok[u] = true;
        for (auto [v, l, a] : g[u]) {
            if (ok[v]) continue;
            self(self, v);
        }
    };
    auto rdfs = [&](auto self, int u) -> void {
        rok[u] = true;
        for (auto [v, l, a] : rg[u]) {
            if (rok[v]) continue;
            self(self, v);
        }
    };
    dfs(dfs, 0);
    rdfs(rdfs, n);

    if (!(ok[n] && rok[n])) {
        cout << 0 << '\n';
        return 0;
    }

    auto ng = make_vec<tuple<ll, ll, ll>>({n+1, 0});
    vector<int> in(n+1);
    rep(i, n+1) {
        if (ok[i] && rok[i]) {
            for (auto [v, l, a] : g[i]) {
                if (ok[v] && rok[v]) {
                    ng[i].eb(v, l, a);
                    in[v]++;
                }
            }
        }
    }

    queue<int> q;
    vector<int> topolo;
    rep(i, n+1) if (in[i] == 0) q.push(i), topolo.pb(i);
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        for (auto [v, l, a] : g[u]) {
            in[v]--;
            if (in[v] == 0) {
                q.push(v);
                topolo.pb(v);
            }
        }
    }
    rep(i, n+1) if (in[i] != 0) {
        cout << "INF\n";
        return 0;
    }

    vector<pair<mint, mint>> dp(n+1);
    dp[0].fi = 1;
    for (auto u : topolo) {
        for (auto [v, l, a] : g[u]) {
            dp[v].fi += dp[u].fi * a;
            dp[v].se += (dp[u].se + dp[u].fi * l) * a;
        }
    }
    cout << dp[n].se.val() << '\n';
}
0