結果

問題 No.1358 [Zelkova 2nd Tune *] 語るなら枚数を...
ユーザー ningenMeningenMe
提出日時 2021-01-23 01:49:44
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 361 ms / 2,000 ms
コード長 7,600 bytes
コンパイル時間 2,043 ms
コンパイル使用メモリ 209,448 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-09 06:59:17
合計ジャッジ時間 4,665 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 1 ms
6,944 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 1 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 6 ms
6,944 KB
testcase_07 AC 4 ms
6,944 KB
testcase_08 AC 4 ms
6,940 KB
testcase_09 AC 5 ms
6,940 KB
testcase_10 AC 4 ms
6,944 KB
testcase_11 AC 303 ms
6,944 KB
testcase_12 AC 283 ms
6,944 KB
testcase_13 AC 361 ms
6,940 KB
testcase_14 AC 240 ms
6,944 KB
testcase_15 AC 266 ms
6,940 KB
testcase_16 AC 320 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using int128  = __int128_t;
using int64   = long long;
using int32   = int;
using uint128 = __uint128_t;
using uint64  = unsigned long long;
using uint32  = unsigned int;

#define ALL(obj) (obj).begin(),(obj).end()
template<class T> using priority_queue_reverse = priority_queue<T,vector<T>,greater<T>>;

constexpr int64 MOD = 1'000'000'000LL + 7; //'
constexpr int64 MOD2 = 998244353;
constexpr int64 HIGHINF = 1'000'000'000'000'000'000LL;
constexpr int64 LOWINF = 1'000'000'000'000'000LL; //'
constexpr long double PI = 3.1415926535897932384626433L;

template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);}
template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));}
template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}}
template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;}
template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}
template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}
template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;}
template <class T>ostream &operator<<(ostream &o, const deque<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;}
template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;}
void print(void) {cout << endl;}
template <class Head> void print(Head&& head) {cout << head;print();}
template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);}
template <class T> void chmax(T& a, const T b){a=max(a,b);}
template <class T> void chmin(T& a, const T b){a=min(a,b);}
vector<string> split(const string &str, const char delemiter) {vector<string> res;stringstream ss(str);string buffer; while( getline(ss, buffer, delemiter) ) res.push_back(buffer); return res;}
inline constexpr int msb(int x) {return x?31-__builtin_clz(x):-1;}
inline constexpr int64 ceil_div(const int64 a,const int64 b) {return (a+b-1)/b - !!((a+b-1)%b<0);}// return ceil(a/b)
inline constexpr int64 floor_div(const int64 a,const int64 b) {return a/b - !!(a%b<0);}// return floor(a/b)
void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;}
void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;}
void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;}

/*
 * @title Gcd - 高速GCD
 * @docs md/math/Gcd.md
 */
class Gcd{
public:
	inline static long long impl(long long n, long long m) {
		static constexpr long long K = 5;
		long long t,s;
		for(int i = 0; t = n - m, s = n - m * K, i < 80; ++i) {
			if(t<m){
				if(!t) return m;
				n = m, m = t;
			}
			else{
				if(!m) return t;
				n=t;
				if(t >= m * K) n = s;
			}
		}
		return impl(m, n % m);
	}
	inline static long long pre(long long n, long long m) {
		long long t;
		for(int i = 0; t = n - m, i < 4; ++i) {
			(t < m ? n=m,m=t : n=t);
			if(!m) return n;
		}
		return impl(n, m);
	}
	inline static long long gcd(long long n, long long m) {
		return (n>m ? pre(n,m) : pre(m,n));
	}
	inline static constexpr long long pureGcd(long long a, long long b) {
		return (b ? pureGcd(b, a % b):a);
	}
	inline static constexpr long long lcm(long long a, long long b) {
		return (a*b ? (a / gcd(a, b)*b): 0);
	}
	inline static constexpr long long extGcd(long long a, long long b, long long &x, long long &y) {
		if (b == 0) return x = 1, y = 0, a;
		long long d = extGcd(b, a%b, y, x);
		return y -= a / b * x, d;
	}
};

/*
 * @title ModInt
 * @docs md/util/ModInt.md
 */
template<long long mod> class ModInt {
public:
    long long x;
    constexpr ModInt():x(0) {}
    constexpr ModInt(long long y) : x(y>=0?(y%mod): (mod - (-y)%mod)%mod) {}
    ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;}
    ModInt &operator+=(const long long y) {ModInt p(y);if((x += p.x) >= mod) x -= mod;return *this;}
    ModInt &operator+=(const int y) {ModInt p(y);if((x += p.x) >= mod) x -= mod;return *this;}
    ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;}
    ModInt &operator-=(const long long y) {ModInt p(y);if((x += mod - p.x) >= mod) x -= mod;return *this;}
    ModInt &operator-=(const int y) {ModInt p(y);if((x += mod - p.x) >= mod) x -= mod;return *this;}
    ModInt &operator*=(const ModInt &p) {x = (x * p.x % mod);return *this;}
    ModInt &operator*=(const long long y) {ModInt p(y);x = (x * p.x % mod);return *this;}
    ModInt &operator*=(const int y) {ModInt p(y);x = (x * p.x % mod);return *this;}
    ModInt &operator^=(const ModInt &p) {x = (x ^ p.x) % mod;return *this;}
    ModInt &operator^=(const long long y) {ModInt p(y);x = (x ^ p.x) % mod;return *this;}
    ModInt &operator^=(const int y) {ModInt p(y);x = (x ^ p.x) % mod;return *this;}
    ModInt &operator/=(const ModInt &p) {*this *= p.inv();return *this;}
    ModInt &operator/=(const long long y) {ModInt p(y);*this *= p.inv();return *this;}
    ModInt &operator/=(const int y) {ModInt p(y);*this *= p.inv();return *this;}
    ModInt operator=(const int y) {ModInt p(y);*this = p;return *this;}
    ModInt operator=(const long long y) {ModInt p(y);*this = p;return *this;}
    ModInt operator-() const {return ModInt(-x); }
    ModInt operator++() {x++;if(x>=mod) x-=mod;return *this;}
    ModInt operator--() {x--;if(x<0) x+=mod;return *this;}
    ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
    ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
    ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
    ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
    ModInt operator^(const ModInt &p) const { return ModInt(*this) ^= p; }
    bool operator==(const ModInt &p) const { return x == p.x; }
    bool operator!=(const ModInt &p) const { return x != p.x; }
    ModInt inv() const {int a=x,b=mod,u=1,v=0,t;while(b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);} return ModInt(u);}
    ModInt pow(long long n) const {ModInt ret(1), mul(x);for(;n > 0;mul *= mul,n >>= 1) if(n & 1) ret *= mul;return ret;}
    friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;}
    friend istream &operator>>(istream &is, ModInt &a) {long long t;is >> t;a = ModInt<mod>(t);return (is);}
};
using modint = ModInt<MOD>;

void solve() {
    int64 A,B,C,D,G,S,T,U,P,Q; cin >> A >> B >> C >> D;
    S = max({A,B,C});
    U = min({A,B,C});
    T = A+B+C-S-U;
    G = Gcd::gcd(T,U);
    A = T/G;
    B = U/G;
    Gcd::extGcd(A,B,P,Q);

    modint ans = 0;
    for(int64 i=0; i<=D; i+=S) {
        int64 E = D-i;
        //Tx+Uy=Eを解く
        if(E%G) continue;
        int64 F = E/G;
        ans += modint(floor_div(F*Q,A)-ceil_div(-F*P,B)+1);
    }
    cout << ans << endl;
}

/**
 * @url 
 * @est
 */ 
int main() {
    cin.tie(0);ios::sync_with_stdio(false);
    int T; cin >> T;
    while(T--) {
        solve();
    }
    return 0;
}
0