結果
問題 | No.1361 [Zelkova 4th Tune *] QUADRUPLE-SEQUENCEの詩 |
ユーザー |
![]() |
提出日時 | 2021-01-23 02:14:57 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,458 bytes |
コンパイル時間 | 2,202 ms |
コンパイル使用メモリ | 208,160 KB |
最終ジャッジ日時 | 2025-01-18 07:09:00 |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 8 WA * 66 |
ソースコード
#include <bits/stdc++.h> #include <random> using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef pair<lint, lint> plint; typedef pair<double long, double long> pld; #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((lint)(x).size()) #define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i) #define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) #define endk '\n' #define fi first #define se second struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; template<class T> auto add = [](T a, T b) -> T { return a + b; }; template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); }; template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); }; template<class T> using V = vector<T>; using Vl = V<lint>; using VVl = V<Vl>; template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) { for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : ""); return os; } template< typename T >istream& operator>>(istream& is, vector< T >& v) { for (T& in : v) is >> in; return is; } template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); } lint ceil(lint a, lint b) { return (a + b - 1) / b; } lint digit(lint a) { return (lint)log10(a); } lint e_dist(plint a, plint b) { return abs(a.fi - b.fi) * abs(a.fi - b.fi) + abs(a.se - b.se) * abs(a.se - b.se); } lint m_dist(plint a, plint b) { return abs(a.fi - b.fi) + abs(a.se - b.se); } void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); } const lint MOD = 1e9 + 7, INF = 1e9 + 1; lint dx[8] = { 1, 0, -1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 }; bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; } struct Edge { lint from, to; lint cost; Edge(lint u, lint v, lint c) { cost = c; from = u; to = v; } bool operator<(const Edge& e) const { return cost < e.cost; } }; struct WeightedEdge { lint to; lint cost; WeightedEdge(lint v, lint c = 1) { to = v; cost = c; } bool operator<(const WeightedEdge& e) const { return cost < e.cost; } }; using WeightedGraph = V<V<WeightedEdge>>; typedef pair<lint, plint> tlint; typedef pair<plint, plint> qlint; typedef pair<string, lint> valstring; lint N[4], S; int main() { REP(i, 4) cin >> N[i]; cin >> S; VVl arr(4); REP(i, 4) { Vl _arr(N[i]); REP(j, N[i]) cin >> _arr[j]; sort(ALL(_arr)); arr[i] = _arr; } Vl fir, sec; REP(i, N[0]) { REP(j, N[1]) { fir.push_back(arr[0][i] * arr[1][j]); } } REP(i, N[2]) { REP(j, N[3]) { sec.push_back(arr[2][i] * arr[3][j]); } } sort(ALL(fir)); sort(ALL(sec)); Vl revsec = sec; reverse(ALL(revsec)); REP(i, SZ(revsec)) revsec[i] *= -1; auto check = [&](lint v) { lint sum = 0; REP(i, N[0] * N[1]) { if (fir[i] == 0) { if (v >= 0) sum += SZ(sec); } else if (fir[i] > 0) { sum += upper_bound(ALL(sec), v / fir[i]) - sec.begin(); } else { sum += upper_bound(ALL(revsec), v / -fir[i]) - revsec.begin(); } } return sum >= S; }; lint ng = -INF, ok = INF; while (ok - ng > 1) { lint mid = (ok + ng) / 2; if (check(mid)) ok = mid; else ng = mid; } cout << ok << endk; if (ok == 0) { REP(i, 4) { if (binary_search(ALL(arr[i]), 0)) cout << 0; else cout << arr[i][0]; if(i != 3) cout << " "; } cout << endk; } else { REP(i, SZ(fir)) { if (fir[i] == 0) continue; if (ok % fir[i] != 0) continue; if (!binary_search(ALL(sec), ok / fir[i])) continue; lint f = fir[i], s = ok / fir[i]; REP(j, N[0]) { if (arr[0][j] == 0) continue; if (f % arr[0][j] != 0) continue; if (!binary_search(ALL(arr[1]), f / arr[0][j])) { cout << arr[0][j] << " " << f / arr[0][j] << " "; break; } } REP(j, N[2]) { if (arr[2][j] == 0) continue; if (s % arr[2][j] != 0) continue; if (!binary_search(ALL(arr[3]), s / arr[2][j])) { cout << arr[2][j] << " " << s / arr[2][j] << endk; break; } } return 0; } } }