結果
問題 | No.1358 [Zelkova 2nd Tune *] 語るなら枚数を... |
ユーザー |
👑 ![]() |
提出日時 | 2021-01-23 02:43:17 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 362 ms / 2,000 ms |
コード長 | 4,984 bytes |
コンパイル時間 | 1,864 ms |
コンパイル使用メモリ | 195,596 KB |
最終ジャッジ日時 | 2025-01-18 07:11:17 |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 17 |
ソースコード
#define _USE_MATH_DEFINES#include <bits/stdc++.h>using namespace std;#define FOR(i,m,n) for(int i=(m);i<(n);++i)#define REP(i,n) FOR(i,0,n)#define ALL(v) (v).begin(),(v).end()using ll = long long;constexpr int INF = 0x3f3f3f3f;constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;constexpr double EPS = 1e-8;constexpr int MOD = 1000000007;// constexpr int MOD = 998244353;constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }struct IOSetup {IOSetup() {std::cin.tie(nullptr);std::ios_base::sync_with_stdio(false);std::cout << fixed << setprecision(20);}} iosetup;template <int MOD>struct MInt {unsigned val;MInt(): val(0) {}MInt(long long x) : val(x >= 0 ? x % MOD : x % MOD + MOD) {}static int get_mod() { return MOD; }static void set_mod(int divisor) { assert(divisor == MOD); }MInt pow(long long exponent) const {MInt tmp = *this, res = 1;while (exponent > 0) {if (exponent & 1) res *= tmp;tmp *= tmp;exponent >>= 1;}return res;}MInt &operator+=(const MInt &x) { if((val += x.val) >= MOD) val -= MOD; return *this; }MInt &operator-=(const MInt &x) { if((val += MOD - x.val) >= MOD) val -= MOD; return *this; }MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % MOD; return *this; }MInt &operator/=(const MInt &x) {// assert(std::__gcd(static_cast<int>(x.val), MOD) == 1);unsigned a = x.val, b = MOD; int u = 1, v = 0;while (b) {unsigned tmp = a / b;std::swap(a -= tmp * b, b);std::swap(u -= tmp * v, v);}return *this *= u;}bool operator==(const MInt &x) const { return val == x.val; }bool operator!=(const MInt &x) const { return val != x.val; }bool operator<(const MInt &x) const { return val < x.val; }bool operator<=(const MInt &x) const { return val <= x.val; }bool operator>(const MInt &x) const { return val > x.val; }bool operator>=(const MInt &x) const { return val >= x.val; }MInt &operator++() { if (++val == MOD) val = 0; return *this; }MInt operator++(int) { MInt res = *this; ++*this; return res; }MInt &operator--() { val = (val == 0 ? MOD : val) - 1; return *this; }MInt operator--(int) { MInt res = *this; --*this; return res; }MInt operator+() const { return *this; }MInt operator-() const { return MInt(val ? MOD - val : 0); }MInt operator+(const MInt &x) const { return MInt(*this) += x; }MInt operator-(const MInt &x) const { return MInt(*this) -= x; }MInt operator*(const MInt &x) const { return MInt(*this) *= x; }MInt operator/(const MInt &x) const { return MInt(*this) /= x; }friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }};namespace std { template <int MOD> MInt<MOD> abs(const MInt<MOD> &x) { return x; } }template <int MOD>struct Combinatorics {using ModInt = MInt<MOD>;int val; // "val!" and "mod" must be disjoint.std::vector<ModInt> fact, fact_inv, inv;Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) {fact[0] = 1;for (int i = 1; i <= val; ++i) fact[i] = fact[i - 1] * i;fact_inv[val] = ModInt(1) / fact[val];for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i;for (int i = 1; i <= val; ++i) inv[i] = fact[i - 1] * fact_inv[i];}ModInt nCk(int n, int k) const {if (n < 0 || n < k || k < 0) return 0;assert(n <= val && k <= val);return fact[n] * fact_inv[k] * fact_inv[n - k];}ModInt nPk(int n, int k) const {if (n < 0 || n < k || k < 0) return 0;assert(n <= val);return fact[n] * fact_inv[n - k];}ModInt nHk(int n, int k) const {if (n < 0 || k < 0) return 0;return k == 0 ? 1 : nCk(n + k - 1, k);}};using ModInt = MInt<MOD>;template <typename T>std::pair<T, T> ext_gcd(T a, T b) {if (b == 0) return {1, 0};T fst, snd; std::tie(fst, snd) = ext_gcd(b, a % b);return {snd, fst - a / b * snd};}void solve() {int n, k, h; ll y; cin >> n >> k >> h >> y;if (n > k) swap(n, k);if (k > h) swap(k, h);if (n > k) swap(n, k);ll g = gcd(n, k), a = n / g, b = k / g;auto [pa, pb] = ext_gcd(a, b);ll ans = 0;for (ll hi = 0; hi * h <= y; ++hi) {ll money = y - hi * h;if (money % g > 0) continue;money /= g;ans += max((pb > 0 ? pb * money / a : -(-pb * money + a - 1) / a) - (pa > 0 ? -pa * money / b : (-pa * money + b - 1) / b) + 1, 0LL);}cout << ans % MOD << '\n';}int main() {int t; cin >> t;while (t--) solve();return 0;}