結果

問題 No.1364 [Renaming] Road to Cherry from Zelkova
ユーザー mugen_1337mugen_1337
提出日時 2021-01-23 03:50:15
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 6,734 bytes
コンパイル時間 3,160 ms
コンパイル使用メモリ 225,240 KB
実行使用メモリ 48,296 KB
最終ジャッジ日時 2024-12-29 14:21:34
合計ジャッジ時間 10,784 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
5,248 KB
testcase_01 AC 3 ms
5,248 KB
testcase_02 AC 3 ms
5,248 KB
testcase_03 AC 3 ms
5,248 KB
testcase_04 AC 3 ms
5,248 KB
testcase_05 AC 3 ms
5,248 KB
testcase_06 AC 3 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 15 ms
6,272 KB
testcase_09 AC 16 ms
5,248 KB
testcase_10 AC 12 ms
5,760 KB
testcase_11 AC 12 ms
5,632 KB
testcase_12 AC 12 ms
5,632 KB
testcase_13 AC 158 ms
34,472 KB
testcase_14 AC 182 ms
37,248 KB
testcase_15 AC 198 ms
39,828 KB
testcase_16 AC 131 ms
28,416 KB
testcase_17 AC 68 ms
23,336 KB
testcase_18 AC 248 ms
48,276 KB
testcase_19 AC 265 ms
48,132 KB
testcase_20 AC 250 ms
48,156 KB
testcase_21 AC 257 ms
48,296 KB
testcase_22 AC 260 ms
48,268 KB
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 AC 55 ms
15,104 KB
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 AC 179 ms
35,888 KB
testcase_36 AC 180 ms
32,524 KB
testcase_37 WA -
testcase_38 AC 106 ms
25,984 KB
testcase_39 AC 108 ms
25,728 KB
testcase_40 AC 105 ms
25,856 KB
testcase_41 AC 109 ms
25,728 KB
testcase_42 AC 103 ms
25,984 KB
testcase_43 AC 94 ms
42,284 KB
testcase_44 AC 72 ms
32,160 KB
testcase_45 WA -
testcase_46 AC 24 ms
21,100 KB
testcase_47 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;
#define ALL(x) begin(x),end(x)
#define rep(i,n) for(int i=0;i<(n);i++)
#define debug(v) cout<<#v<<":";for(auto x:v){cout<<x<<' ';}cout<<endl;
#define mod 1000000007
using ll=long long;
const int INF=1000000000;
const ll LINF=1001002003004005006ll;
int dx[]={1,0,-1,0},dy[]={0,1,0,-1};
// ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
template<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return true;}return false;}
template<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return true;}return false;}

struct IOSetup{
    IOSetup(){
        cin.tie(0);
        ios::sync_with_stdio(0);
        cout<<fixed<<setprecision(12);
    }
} iosetup;
 
template<typename T>
ostream &operator<<(ostream &os,const vector<T>&v){
    for(int i=0;i<(int)v.size();i++) os<<v[i]<<(i+1==(int)v.size()?"":" ");
    return os;
}
template<typename T>
istream &operator>>(istream &is,vector<T>&v){
    for(T &x:v)is>>x;
    return is;
}

#line 1 "Graph2/GraphTemplate.cpp"
// graph template
// ref : https://ei1333.github.io/library/graph/graph-template.cpp
template<typename T=int>
struct Edge{
    int from,to;
    T w;
    int idx;
    Edge()=default;
    Edge(int from,int to,T w=1,int idx=-1):from(from),to(to),w(w),idx(idx){}
    operator int() const{return to;}
};

template<typename T=int>
struct Graph{
    vector<vector<Edge<T>>> g;
    int V,E;
    Graph()=default;
    Graph(int n):g(n),V(n),E(0){}

    size_t size(){
        return g.size();
    }
    void resize(int k){
        g.resize(k);
    }
    inline const vector<Edge<T>> &operator[](int k)const{
        return (g.at(k));
    }
    inline vector<Edge<T>> &operator[](int k){
        return (g.at(k));
    }
    void add_directed_edge(int from,int to,T cost=1){
        g[from].emplace_back(from,to,cost,E++);
    }
    void add_edge(int from,int to,T cost=1){
        g[from].emplace_back(from,to,cost,E);
        g[to].emplace_back(to,from,cost,E++);
    }
    void read(int m,int pad=-1,bool weighted=false,bool directed=false){
        for(int i=0;i<m;i++){
            int u,v;cin>>u>>v;
            u+=pad,v+=pad;
            T w=T(1);
            if(weighted) cin>>w;
            if(directed) add_directed_edge(u,v,w);
            else         add_edge(u,v,w);
        }
    }
};
#line 2 "Graph2/StronglyConnectedbelongonents.cpp"

// scc.belong[i]    : strongly connected belongonents i belongs 
// scc.group[i]   : vertice i-th strongly connected belongonent has
// scc.compressed : compressed Graph, DAG
template<typename T=int>
struct StronglyConnectedbelongonents{
    private:
    Graph<T> g,rg;
    vector<int> check;
    void dfs(int cur,vector<int> &ord){
        for(auto &to:g[cur])if(!check[to]){
            check[to]=true;
            dfs(to,ord);
        }
        ord.push_back(cur);
    }
    void rdfs(int cur,int p){
        for(auto &to:rg[cur])if(belong[to]==-1){
            belong[to]=p;
            rdfs(to,p);
        }
    }

    void build(){
        vector<int> ord;
        for(int i=0;i<(int)g.size();i++)if(!check[i]){
            check[i]=true;
            dfs(i,ord);
        }
        int ptr=0;;
        for(int i=(int)ord.size()-1;i>=0;i--)if(belong[ord[i]]==-1){
            belong[ord[i]]=ptr;
            rdfs(ord[i],ptr);ptr++;
        }
        compressed.resize(ptr);
        group.resize(ptr);
        for(int i=0;i<(int)g.size();i++){
            int u=belong[i];
            group[u].push_back(i);
            for(auto &e:g[i]){
                int v=belong[e];
                if(u!=v) compressed.add_directed_edge(u,v,e.w);
            }
        }
        return ;
    }

    public:
    vector<int> belong;
    vector<vector<int>> group;
    Graph<T> compressed;
    
    StronglyConnectedbelongonents(Graph<T> &g):g(g),rg(g.size()),check(g.size()),belong(g.size(),-1){
        for(int i=0;i<(int)g.size();i++)for(auto &e:g[i]) rg.add_directed_edge(e.to,e.from,e.w);
        build();
    }
};

template<ll Mod>
struct ModInt{
    long long x;
    ModInt():x(0){}
    ModInt(long long y):x(y>=0?y%Mod:(Mod-(-y)%Mod)%Mod){}
    ModInt &operator+=(const ModInt &p){
        if((x+=p.x)>=Mod) x-=Mod;
        return *this;
    }
    ModInt &operator-=(const ModInt &p){
        if((x+=Mod-p.x)>=Mod)x-=Mod;
        return *this;
    }
    ModInt &operator*=(const ModInt &p){
        x=(int)(1ll*x*p.x%Mod);
        return *this;
    }
    ModInt &operator/=(const ModInt &p){
        (*this)*=p.inverse();
        return *this;
    }
    ModInt operator-()const{return ModInt(-x);}
    ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;}
    ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;}
    ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;}
    ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;}
    bool operator==(const ModInt &p)const{return x==p.x;}
    bool operator!=(const ModInt &p)const{return x!=p.x;}
    ModInt inverse()const{
        int a=x,b=Mod,u=1,v=0,t;
        while(b>0){
            t=a/b;
            swap(a-=t*b,b);swap(u-=t*v,v);
        }
        return ModInt(u);
    }
    ModInt pow(long long n)const{
        ModInt ret(1),mul(x);
        while(n>0){
            if(n&1) ret*=mul;
            mul*=mul;n>>=1;
        }
        return ret;
    }
    friend ostream &operator<<(ostream &os,const ModInt &p){return os<<p.x;}
    friend istream &operator>>(istream &is,ModInt &a){long long t;is>>t;a=ModInt<Mod>(t);return (is);}
    static int get_mod(){return Mod;}
};

using mint=ModInt<1000000007>;

signed main(){
    int n,m;cin>>n>>m;n++;
    Graph<mint> g(n);
    vector<mint> a(m);
    rep(i,m){
        int u,v;mint c;cin>>u>>v>>c>>a[i];
        g.add_directed_edge(u,v,c);
    }

    StronglyConnectedbelongonents scc(g);

    {
        vector<bool> check(n,false);
        for(int i=scc.belong[0];i<scc.belong[n-1];i++){
            if(scc.group[i].size()>1) check[i]=true;
            if(check[i]) for(auto &e:scc.compressed[i]) check[e]=true;
        }
        if(check[scc.belong[n-1]]){
            cout<<"INF"<<endl;
            return 0;
        }
    }


    vector<int> cnt(n,0),inf(n,0);
    vector<mint> dp1(n,0),dp2(n,0);

    function<void(int)> dfs=[&](int cur){
        if(cnt[cur]==1){
            inf[cur]=1;
            cnt[cur]=2;
            return ;
        }
        if(cnt[cur]) return ;

        cnt[cur]++;
        
        if(cur==n-1) dp1[cur]=1;

        for(auto &e:g[cur]){
            dfs(e);

            if(inf[e]) inf[cur]=1;
            else{
                dp1[cur]+=dp1[e]*a[e.idx];
                dp2[cur]+=dp2[e]*a[e.idx]+dp1[e]*a[e.idx]*e.w;
            }
        }
        cnt[cur]++;
    };
    dfs(0);

    cout<<dp2[0]<<endl;
    return 0;
}
0