結果

問題 No.1364 [Renaming] Road to Cherry from Zelkova
ユーザー FF256grhyFF256grhy
提出日時 2021-01-23 11:36:35
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 10,608 bytes
コンパイル時間 1,904 ms
コンパイル使用メモリ 201,044 KB
最終ジャッジ日時 2025-01-18 07:22:53
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp: In instantiation of ‘T in() [with T = std::array<int, 2>]’:
main.cpp:57:67:   required from ‘auto ain() [with T = int; long unsigned int N = 2]’
main.cpp:269:27:   required from here
main.cpp:48:43: error: no match for ‘operator>>’ (operand types are ‘std::basic_istream<char>’ and ‘std::array<int, 2>’)
   48 | template<typename T> T in() { T a; (* IS) >> a; return a; }
      |                                    ~~~~~~~^~~~
In file included from /usr/include/c++/13/sstream:40,
                 from /usr/include/c++/13/complex:45,
                 from /usr/include/c++/13/ccomplex:39,
                 from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:127,
                 from main.cpp:1:
/usr/include/c++/13/istream:325:7: note: candidate: ‘std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(void*&) [with _CharT = char; _Traits = std::char_traits<char>; __istream_type = std::basic_istream<char>]’
  325 |       operator>>(void*& __p)
      |       ^~~~~~~~
/usr/include/c++/13/istream:325:25: note:   no known conversion for argument 1 from ‘std::array<int, 2>’ to ‘void*&’
  325 |       operator>>(void*& __p)
      |                  ~~~~~~~^~~
/usr/include/c++/13/istream:224:7: note: candidate: ‘std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(long double&) [with _CharT = char; _Traits = std::char_traits<char>; __istream_type = std::basic_istream<char>]’
  224 |       operator>>(long double& __f)
      |       ^~~~~~~~
/usr/include/c++/13/istream:224:31: note:   no known conversion for argument 1 from ‘std::array<int, 2>’ to ‘long double&’
  224 |       operator>>(long double& __f)
      |                  ~~~~~~~~~~~~~^~~
/usr/include/c++/13/istream:220:7: note: candidate: ‘std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(double&) [with _CharT = char; _Trait

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incII(i, l, r) for(LL i = (l) ; i <= (r); i++)
#define incIX(i, l, r) for(LL i = (l) ; i < (r); i++)
#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)
#define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++)
#define decII(i, l, r) for(LL i = (r) ; i >= (l); i--)
#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)
#define decXI(i, l, r) for(LL i = (r) ; i > (l); i--)
#define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--)
#define inc(i, n) incIX(i, 0, n)
#define dec(i, n) decIX(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };
auto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); };
auto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); };
auto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); };
auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); };
auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define MT make_tuple
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(c) c.begin(), c.end()
#define RALL(c) c.rbegin(), c.rend()
#define RV(c) reverse(ALL(c))
#define SC static_cast
#define SI(c) SC<int>(c.size())
#define SL(c) SC<LL >(c.size())
#define RF(e, c) for(auto & e: c)
#define SF(c, ...) for(auto & [__VA_ARGS__]: c)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
auto * IS = & cin;
auto * OS = & cout;
array<string, 3> SEQ = { "", " ", "" };
// input
template<typename T> T in() { T a; (* IS) >> a; return a; }
// input: tuple
template<int I, typename U> void tin_(istream & is, U & t) {
if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }
}
template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }
template<typename ... T> auto tin() { return in<tuple<T ...>>(); }
// input: array
template<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }
template<typename T, size_t N> auto ain() { return in<array<T, N>>(); }
// input: multi-dimensional vector
template<typename T> T vin() { T v; (* IS) >> v; return v; }
template<typename T, typename N, typename ... M> auto vin(N n, M ... m) {
vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;
}
// input: multi-column (tuple<vector>)
template<typename U, int I> void colin_([[maybe_unused]] U & t) { }
template<typename U, int I, typename A, typename ... B> void colin_(U & t) {
get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);
}
template<typename ... T> auto colin(int n) {
tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;
}
// output
void out_([[maybe_unused]] string s) { }
template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }
template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }
auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };
auto out = [](auto ... a) { outF("", " " , "\n", a ...); };
auto outS = [](auto ... a) { outF("", " " , " " , a ...); };
auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); };
auto outN = [](auto ... a) { outF("", "" , "" , a ...); };
// output: multi-dimensional vector
template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {
os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]);
}
template<typename T> void vout_(T && v) { (* OS) << v; }
template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {
inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); }
}
template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }
template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; }
// ---- ----
template<LL M> class ModInt {
private:
LL v;
pair<LL, LL> ext_gcd(LL a, LL b) {
if(b == 0) { assert(a == 1); return { 1, 0 }; }
auto p = ext_gcd(b, a % b);
return { p.SE, p.FI - (a / b) * p.SE };
}
public:
ModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } }
LL val() { return v; }
static LL mod() { return M; }
ModInt inv() { return ext_gcd(M, v).SE; }
ModInt exp(LL b) {
ModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; }
while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; }
return p;
}
friend bool operator< (ModInt a, ModInt b) { return (a.v < b.v); }
friend bool operator> (ModInt a, ModInt b) { return (a.v > b.v); }
friend bool operator<=(ModInt a, ModInt b) { return (a.v <= b.v); }
friend bool operator>=(ModInt a, ModInt b) { return (a.v >= b.v); }
friend bool operator==(ModInt a, ModInt b) { return (a.v == b.v); }
friend bool operator!=(ModInt a, ModInt b) { return (a.v != b.v); }
friend ModInt operator+ (ModInt a ) { return ModInt(+a.v); }
friend ModInt operator- (ModInt a ) { return ModInt(-a.v); }
friend ModInt operator+ (ModInt a, ModInt b) { return ModInt(a.v + b.v); }
friend ModInt operator- (ModInt a, ModInt b) { return ModInt(a.v - b.v); }
friend ModInt operator* (ModInt a, ModInt b) { return ModInt(a.v * b.v); }
friend ModInt operator/ (ModInt a, ModInt b) { return a * b.inv(); }
friend ModInt operator^ (ModInt a, LL b) { return a.exp(b); }
friend ModInt & operator+=(ModInt & a, ModInt b) { return (a = a + b); }
friend ModInt & operator-=(ModInt & a, ModInt b) { return (a = a - b); }
friend ModInt & operator*=(ModInt & a, ModInt b) { return (a = a * b); }
friend ModInt & operator/=(ModInt & a, ModInt b) { return (a = a / b); }
friend ModInt & operator^=(ModInt & a, LL b) { return (a = a ^ b); }
friend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; }
friend ostream & operator<<(ostream & s, ModInt b) { return (s << b.v); }
};
// ----
using MI = ModInt<1'000'000'007>;
#include <algorithm>
#include <algorithm>
#include <utility>
#include <vector>
namespace atcoder {
namespace internal {
template <class E> struct csr {
std::vector<int> start;
std::vector<E> elist;
csr(int n, const std::vector<std::pair<int, E>>& edges)
: start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
// Reference:
// R. Tarjan,
// Depth-First Search and Linear Graph Algorithms
struct scc_graph {
public:
scc_graph(int n) : _n(n) {}
int num_vertices() { return _n; }
void add_edge(int from, int to) { edges.push_back({from, {to}}); }
// @return pair of (# of scc, scc id)
std::pair<int, std::vector<int>> scc_ids() {
auto g = csr<edge>(_n, edges);
int now_ord = 0, group_num = 0;
std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
visited.reserve(_n);
auto dfs = [&](auto self, int v) -> void {
low[v] = ord[v] = now_ord++;
visited.push_back(v);
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto to = g.elist[i].to;
if (ord[to] == -1) {
self(self, to);
low[v] = std::min(low[v], low[to]);
} else {
low[v] = std::min(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (true) {
int u = visited.back();
visited.pop_back();
ord[u] = _n;
ids[u] = group_num;
if (u == v) break;
}
group_num++;
}
};
for (int i = 0; i < _n; i++) {
if (ord[i] == -1) dfs(dfs, i);
}
for (auto& x : ids) {
x = group_num - 1 - x;
}
return {group_num, ids};
}
std::vector<std::vector<int>> scc() {
auto ids = scc_ids();
int group_num = ids.first;
std::vector<int> counts(group_num);
for (auto x : ids.second) counts[x]++;
std::vector<std::vector<int>> groups(ids.first);
for (int i = 0; i < group_num; i++) {
groups[i].reserve(counts[i]);
}
for (int i = 0; i < _n; i++) {
groups[ids.second[i]].push_back(i);
}
return groups;
}
private:
int _n;
struct edge {
int to;
};
std::vector<std::pair<int, edge>> edges;
};
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
struct scc_graph {
public:
scc_graph() : internal(0) {}
scc_graph(int n) : internal(n) {}
void add_edge(int from, int to) {
int n = internal.num_vertices();
assert(0 <= from && from < n);
assert(0 <= to && to < n);
internal.add_edge(from, to);
}
std::vector<std::vector<int>> scc() { return internal.scc(); }
private:
internal::scc_graph internal;
};
} // namespace atcoder
using namespace atcoder;
int main() {
auto [n, m] = ain<int, 2>();
n++;
vector<vector<array<int, 3>>> g(n);
scc_graph scc(n);
inc(i, m) {
auto [a, b, c, d] = ain<int, 4>();
g[a].PB({ b, c, d });
scc.add_edge(a, b);
}
auto ts = scc.scc();
vector<MI> P(n), S(n);
vector<int> re(n), cy(n);
P[0] = 1;
re[0] = 1;
RF(v, ts) {
int re_v = 0, cy_v = 0;
RF(a, v) { re_v |= re[a]; cy_v |= cy[a]; }
RF(a, v) { re[a] |= re_v; cy[a] |= cy_v; }
RF(a, v) {
if(re[a] && SI(v) > 1) { cy[a] = 1; }
SF(g[a], b, c, d) {
P[b] += P[a] * d;
S[b] += (P[a] * c + S[a]) * d;
re[b] |= re[a];
cy[b] |= cy[a];
}
}
}
if(cy.BA) { out("INF"); } else { out(S.BA); }
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0