結果
問題 | No.453 製薬会社 |
ユーザー | hamray |
提出日時 | 2021-01-27 00:10:50 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 13,101 bytes |
コンパイル時間 | 2,044 ms |
コンパイル使用メモリ | 182,992 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-23 22:07:00 |
合計ジャッジ時間 | 2,744 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,944 KB |
コンパイルメッセージ
main.cpp: In function 'int main()': main.cpp:449:19: warning: narrowing conversion of '(28 * Cc)' from 'int' to 'double' [-Wnarrowing] 449 | double B[]={28*Cc,28*Dd}; // should initialis the b array here | ~~^~~ main.cpp:449:25: warning: narrowing conversion of '(28 * Dd)' from 'int' to 'double' [-Wnarrowing] 449 | double B[]={28*Cc,28*Dd}; // should initialis the b array here | ~~^~~
ソースコード
#include <bits/stdc++.h> //#include <atcoder/all> //using namespace atcoder; #pragma GCC target ("avx2") #pragma GCC optimization ("O3") #pragma GCC optimization ("unroll-loops") using namespace std; typedef vector<int> VI; typedef vector<VI> VVI; typedef vector<string> VS; typedef pair<int, int> PII; typedef pair<int, int> pii; typedef pair<long long, long long> PLL; typedef pair<int, PII> TIII; typedef long long ll; typedef long double ld; typedef unsigned long long ull; #define FOR(i, s, n) for (int i = s; i < (int)n; ++i) #define REP(i, n) FOR(i, 0, n) #define rep(i, a, b) for (int i = a; i < (b); ++i) #define trav(a, x) for (auto &a : x) #define all(x) x.begin(), x.end() #define MOD 1000000007 template<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;} template<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;} const double EPS = 1e-9, PI = acos(-1); const double pi = 3.141592653589793238462643383279; //ここから編集 typedef string::const_iterator State; ll GCD(ll a, ll b){ return (b==0)?a:GCD(b, a%b); } ll LCM(ll a, ll b){ return a/GCD(a, b) * b; } template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< 1000000007 >; template< typename T > struct Combination { vector< T > _fact, _rfact, _inv; Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) { _fact[0] = _rfact[sz] = _inv[0] = 1; for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i; _rfact[sz] /= _fact[sz]; for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1); for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1]; } inline T fact(int k) const { return _fact[k]; } inline T rfact(int k) const { return _rfact[k]; } inline T inv(int k) const { return _inv[k]; } T P(int n, int r) const { if(r < 0 || n < r) return 0; return fact(n) * rfact(n - r); } T C(int p, int q) const { if(q < 0 || p < q) return 0; return fact(p) * rfact(q) * rfact(p - q); } T H(int n, int r) const { if(n < 0 || r < 0) return (0); return r == 0 ? 1 : C(n + r - 1, r); } }; class Simplex{ private: int rows, cols; //stores coefficients of all the variables std::vector <std::vector<double> > A; //stores constants of constraints std::vector<double> B; //stores the coefficients of the objective function std::vector<double> C; double maximum; bool isUnbounded; public: Simplex(std::vector <std::vector<double> > matrix,std::vector<double> b ,std::vector<double> c){ maximum = 0; isUnbounded = false; rows = matrix.size(); cols = matrix[0].size(); A.resize( rows , vector<double>( cols , 0 ) ); B.resize(b.size()); C.resize(c.size()); for(int i= 0;i<rows;i++){ //pass A[][] values to the metrix for(int j= 0; j< cols;j++ ){ A[i][j] = matrix[i][j]; } } for(int i=0; i< c.size() ;i++ ){ //pass c[] values to the B vector C[i] = c[i] ; } for(int i=0; i< b.size();i++ ){ //pass b[] values to the B vector B[i] = b[i]; } } bool simplexAlgorithmCalculataion(){ //check whether the table is optimal,if optimal no need to process further if(checkOptimality()==true){ return true; } //find the column which has the pivot.The least coefficient of the objective function(C array). int pivotColumn = findPivotColumn(); if(isUnbounded == true){ cout<<"Error unbounded"<<endl; return true; } //find the row with the pivot value.The least value item's row in the B array int pivotRow = findPivotRow(pivotColumn); //form the next table according to the pivot value doPivotting(pivotRow,pivotColumn); return false; } bool checkOptimality(){ //if the table has further negative constraints,then it is not optimal bool isOptimal = false; int positveValueCount = 0; //check if the coefficients of the objective function are negative for(int i=0; i<C.size();i++){ double value = C[i]; if(value >= 0){ positveValueCount++; } } //if all the constraints are positive now,the table is optimal if(positveValueCount == C.size()){ isOptimal = true; } return isOptimal; } void doPivotting(int pivotRow, int pivotColumn){ double pivetValue = A[pivotRow][pivotColumn];//gets the pivot value double pivotRowVals[cols];//the column with the pivot double pivotColVals[rows];//the row with the pivot double rowNew[cols];//the row after processing the pivot value maximum = maximum - (C[pivotColumn]*(B[pivotRow]/pivetValue)); //set the maximum step by step //get the row that has the pivot value for(int i=0;i<cols;i++){ pivotRowVals[i] = A[pivotRow][i]; } //get the column that has the pivot value for(int j=0;j<rows;j++){ pivotColVals[j] = A[j][pivotColumn]; } //set the row values that has the pivot value divided by the pivot value and put into new row for(int k=0;k<cols;k++){ rowNew[k] = pivotRowVals[k]/pivetValue; } B[pivotRow] = B[pivotRow]/pivetValue; //process the other coefficients in the A array by subtracting for(int m=0;m<rows;m++){ //ignore the pivot row as we already calculated that if(m !=pivotRow){ for(int p=0;p<cols;p++){ double multiplyValue = pivotColVals[m]; A[m][p] = A[m][p] - (multiplyValue*rowNew[p]); //C[p] = C[p] - (multiplyValue*C[pivotRow]); //B[i] = B[i] - (multiplyValue*B[pivotRow]); } } } //process the values of the B array for(int i=0;i<B.size();i++){ if(i != pivotRow){ double multiplyValue = pivotColVals[i]; B[i] = B[i] - (multiplyValue*B[pivotRow]); } } //the least coefficient of the constraints of the objective function double multiplyValue = C[pivotColumn]; //process the C array for(int i=0;i<C.size();i++){ C[i] = C[i] - (multiplyValue*rowNew[i]); } //replacing the pivot row in the new calculated A array for(int i=0;i<cols;i++){ A[pivotRow][i] = rowNew[i]; } } //print the current A array void print(){ for(int i=0; i<rows;i++){ for(int j=0;j<cols;j++){ cout<<A[i][j] <<" "; } cout<<""<<endl; } cout<<""<<endl; } //find the least coefficients of constraints in the objective function's position int findPivotColumn(){ int location = 0; double minm = C[0]; for(int i=1;i<C.size();i++){ if(C[i]<minm){ minm = C[i]; location = i; } } return location; } //find the row with the pivot value.The least value item's row in the B array int findPivotRow(int pivotColumn){ double positiveValues[rows]; std::vector<double> result(rows,0); //double result[rows]; int negativeValueCount = 0; for(int i=0;i<rows;i++){ if(A[i][pivotColumn]>0){ positiveValues[i] = A[i][pivotColumn]; } else{ positiveValues[i]=0; negativeValueCount+=1; } } //checking the unbound condition if all the values are negative ones if(negativeValueCount==rows){ isUnbounded = true; } else{ for(int i=0;i<rows;i++){ double value = positiveValues[i]; if(value>0){ result[i] = B[i]/value; } else{ result[i] = 0; } } } //find the minimum's location of the smallest item of the B array double minimum = 99999999; int location = 0; for(int i=0;i<sizeof(result)/sizeof(result[0]);i++){ if(result[i]>0){ if(result[i]<minimum){ minimum = result[i]; location = i; } } } return location; } void CalculateSimplex(){ bool end = false; while(!end){ bool result = simplexAlgorithmCalculataion(); if(result==true){ end = true; } } for(int i=0;i< A.size(); i++){ //every basic column has the values, get it form B array int count0 = 0; int index = 0; for(int j=0; j< rows; j++){ if(A[j][i]==0.0){ count0 += 1; } else if(A[j][i]==1){ index = j; } } } cout<<maximum<<endl; //print the maximum values } }; int main() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(12); int Cc, Dd; cin >> Cc >> Dd; int colSizeA=4; //should initialise columns size in A int rowSizeA = 2; //should initialise columns row in A[][] vector double C[]= {-1000,-2000,0,0}; //should initialis the c arry here double B[]={28*Cc,28*Dd}; // should initialis the b array here double a[2][4] = { //should intialis the A[][] array here { 21, 8, 1, 0}, { 7, 20, 0, 1}, }; std::vector <std::vector<double> > vec2D(rowSizeA, std::vector<double>(colSizeA, 0)); std::vector<double> b(rowSizeA,0); std::vector<double> c(colSizeA,0); for(int i=0;i<rowSizeA;i++){ //make a vector from given array for(int j=0; j<colSizeA;j++){ vec2D[i][j] = a[i][j]; } } for(int i=0;i<rowSizeA;i++){ b[i] = B[i]; } for(int i=0;i<colSizeA;i++){ c[i] = C[i]; } // hear the make the class parameters with A[m][n] vector b[] vector and c[] vector Simplex simplex(vec2D,b,c); simplex.CalculateSimplex(); return 0; }