結果
問題 | No.1371 交換門松列・松 |
ユーザー |
![]() |
提出日時 | 2021-01-29 22:13:21 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 107 ms / 4,000 ms |
コード長 | 5,781 bytes |
コンパイル時間 | 2,122 ms |
コンパイル使用メモリ | 206,072 KB |
最終ジャッジ日時 | 2025-01-18 09:18:05 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 29 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:163:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 163 | scanf("%d",&A[i]); | ~~~~~^~~~~~~~~~~~
ソースコード
#include <stdio.h> #include <bits/stdc++.h> #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #include <cassert> #include <vector> namespace atcoder { // Reference: https://en.wikipedia.org/wiki/Fenwick_tree template <class T> struct fenwick_tree { using U = internal::to_unsigned_t<T>; public: fenwick_tree() : _n(0) {} fenwick_tree(int n) : _n(n), data(n) {} void add(int p, T x) { assert(0 <= p && p < _n); p++; while (p <= _n) { data[p - 1] += U(x); p += p & -p; } } T sum(int l, int r) { assert(0 <= l && l <= r && r <= _n); return sum(r) - sum(l); } private: int _n; std::vector<U> data; U sum(int r) { U s = 0; while (r > 0) { s += data[r - 1]; r -= r & -r; } return s; } }; } // namespace atcoder using namespace atcoder; using namespace std; #define rep(i,n) for (int i = 0; i < (n); ++i) #define Inf 1000000000 bool is_kadomatsu(long long a,long long b,long long c){ if(a==b||b==c||c==a)return false; if(b>a&&b>c)return true; if(b<a&&b<c)return true; return false; } int main(){ int N; cin>>N; vector<int> A(N); vector<int> ind(N); rep(i,N){ scanf("%d",&A[i]); A[i]--; ind[i] = i; } sort(ind.begin(),ind.end(),[&](int a,int b){ return A[a]<A[b]; }); vector<bool> larger(N,false); rep(i,N){ if(i==0){ if(A[1]<A[0])larger[i] = true; } else{ if(!larger[i-1])larger[i] = true; } } fenwick_tree<long long> F(N); vector<vector<int>> Del(N+1),Add(N+1); rep(i,N){ if(larger[i]){ int m = 0; if(i!=0)m = max(m,A[i-1]); if(i!=N-1)m = max(m,A[i+1]); m++; Add[m].push_back(i); } else{ int m = Inf; if(i!=0)m = min(m,A[i-1]); if(i!=N-1)m = min(m,A[i+1]); Del[m].push_back(i); F.add(A[i],1); } } long long ans = 0LL; rep(i,N){ int t = A[ind[i]]; rep(j,Del[t].size()){ F.add(A[Del[t][j]],-1); } Del[t].clear(); rep(j,Add[t].size()){ F.add(A[Add[t][j]],1); } Add[t].clear(); int ii = ind[i]; if(larger[ii]){ int m = 0; if(ii!=0)m = max(m,A[ii-1]); if(ii!=N-1)m = max(m,A[ii+1]); m++; ans += F.sum(m,N); } else{ int m = Inf; if(ii!=0)m = min(m,A[ii-1]); if(ii!=N-1)m = min(m,A[ii+1]); ans += F.sum(0,m); } } ans -= N; ans /= 2; cout<<ans<<endl; return 0; }