結果

問題 No.1371 交換門松列・松
ユーザー jell
提出日時 2021-01-29 22:22:04
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,619 ms / 4,000 ms
コード長 61,980 bytes
コンパイル時間 4,484 ms
コンパイル使用メモリ 293,356 KB
最終ジャッジ日時 2025-01-18 09:24:04
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 29
権限があれば一括ダウンロードができます
コンパイルメッセージ
Library/src/data_structure/segment_tree/basic.hpp:401:19: warning: ‘template<class Monoid, class Endomorphism, template<class ...> class Container_tmpl> struct workspace::segtree_impl::lazy’ is deprecated [-Wdeprecated-declarations]
Library/src/data_structure/segment_tree/basic.hpp:341:23: note: declared here

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "atcoder-workspace/a.cc"
// #undef _GLIBCXX_DEBUG
// #define NDEBUG
#include <bits/extc++.h>
#line 2 "Library/lib/alias"
/**
* @file alias
* @brief Alias
*/
#line 13 "Library/lib/alias"
#line 1 "Library/lib/bit"
#if __cplusplus > 201703L
#include <bit>
#else
#ifndef _GLIBCXX_BIT
#define _GLIBCXX_BIT 1
#include <limits>
#include <type_traits>
namespace std {
template <typename _Tp> constexpr _Tp __rotl(_Tp __x, int __s) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
const int __r = __s % _Nd;
if (__r == 0)
return __x;
else if (__r > 0)
return (__x << __r) | (__x >> ((_Nd - __r) % _Nd));
else
return (__x >> -__r) | (__x << ((_Nd + __r) % _Nd)); // rotr(x, -r)
}
template <typename _Tp> constexpr _Tp __rotr(_Tp __x, int __s) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
const int __r = __s % _Nd;
if (__r == 0)
return __x;
else if (__r > 0)
return (__x >> __r) | (__x << ((_Nd - __r) % _Nd));
else
return (__x << -__r) | (__x >> ((_Nd + __r) % _Nd)); // rotl(x, -r)
}
template <typename _Tp> constexpr int __countl_zero(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return _Nd;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) {
constexpr int __diff = _Nd_u - _Nd;
return __builtin_clz(__x) - __diff;
} else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) {
constexpr int __diff = _Nd_ul - _Nd;
return __builtin_clzl(__x) - __diff;
} else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) {
constexpr int __diff = _Nd_ull - _Nd;
return __builtin_clzll(__x) - __diff;
} else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
unsigned long long __high = __x >> _Nd_ull;
if (__high != 0) {
constexpr int __diff = (2 * _Nd_ull) - _Nd;
return __builtin_clzll(__high) - __diff;
}
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
return (_Nd - _Nd_ull) + __builtin_clzll(__low);
}
}
template <typename _Tp> constexpr int __countl_one(_Tp __x) noexcept {
if (__x == numeric_limits<_Tp>::max()) return numeric_limits<_Tp>::digits;
return __countl_zero<_Tp>((_Tp)~__x);
}
template <typename _Tp> constexpr int __countr_zero(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return _Nd;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u)
return __builtin_ctz(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul)
return __builtin_ctzl(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull)
return __builtin_ctzll(__x);
else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
if (__low != 0) return __builtin_ctzll(__low);
unsigned long long __high = __x >> _Nd_ull;
return __builtin_ctzll(__high) + _Nd_ull;
}
}
template <typename _Tp> constexpr int __countr_one(_Tp __x) noexcept {
if (__x == numeric_limits<_Tp>::max()) return numeric_limits<_Tp>::digits;
return __countr_zero((_Tp)~__x);
}
template <typename _Tp> constexpr int __popcount(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return 0;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u)
return __builtin_popcount(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul)
return __builtin_popcountl(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull)
return __builtin_popcountll(__x);
else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
unsigned long long __high = __x >> _Nd_ull;
return __builtin_popcountll(__low) + __builtin_popcountll(__high);
}
}
template <typename _Tp> constexpr bool __has_single_bit(_Tp __x) noexcept {
return __popcount(__x) == 1;
}
template <typename _Tp> constexpr _Tp __bit_ceil(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0 || __x == 1) return 1;
auto __shift_exponent = _Nd - __countl_zero((_Tp)(__x - 1u));
#ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED
if (!__builtin_is_constant_evaluated()) {
__glibcxx_assert(__shift_exponent != numeric_limits<_Tp>::digits);
}
#endif
using __promoted_type = decltype(__x << 1);
if _GLIBCXX17_CONSTEXPR (!is_same<__promoted_type, _Tp>::value) {
const int __extra_exp = sizeof(__promoted_type) / sizeof(_Tp) / 2;
__shift_exponent |= (__shift_exponent & _Nd) << __extra_exp;
}
return (_Tp)1u << __shift_exponent;
}
template <typename _Tp> constexpr _Tp __bit_floor(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return 0;
return (_Tp)1u << (_Nd - __countl_zero((_Tp)(__x >> 1)));
}
template <typename _Tp> constexpr _Tp __bit_width(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
return _Nd - __countl_zero(__x);
}
} // namespace std
#endif
#endif
#line 15 "Library/lib/alias"
namespace workspace {
constexpr char eol = '\n';
using namespace std;
using i32 = int_least32_t;
using u32 = uint_least32_t;
using i64 = int_least64_t;
using u64 = uint_least64_t;
#ifdef __SIZEOF_INT128__
using i128 = __int128_t;
using u128 = __uint128_t;
#else
#warning 128bit integer is not available.
#endif
template <class T, class Comp = less<T>>
using priority_queue = std::priority_queue<T, vector<T>, Comp>;
template <class T> using stack = std::stack<T, vector<T>>;
template <typename _Tp> constexpr _Tp __bsf(_Tp __x) noexcept {
return std::__countr_zero(__x);
}
template <typename _Tp> constexpr _Tp __bsr(_Tp __x) noexcept {
return std::__bit_width(__x) - 1;
}
} // namespace workspace
#line 6 "atcoder-workspace/a.cc"
// #include "lib/cxx20"
#line 2 "Library/lib/direct"
/*
* @file direct
* @brief Pragma Directive
*/
#ifdef ONLINE_JUDGE
#pragma GCC optimize("O3")
#pragma GCC target("avx,avx2")
#pragma GCC optimize("unroll-loops")
#endif
#line 8 "atcoder-workspace/a.cc"
// #include "lib/limits"
// #include "lib/opt"
#line 2 "Library/src/sys/clock.hpp"
/*
* @fn clock.hpp
* @brief Clock
*/
#line 9 "Library/src/sys/clock.hpp"
namespace workspace {
using namespace std::chrono;
namespace internal {
// The start time of the program.
const auto start_time{system_clock::now()};
} // namespace internal
/*
* @fn elapsed
* @return elapsed time of the program
*/
int64_t elapsed() {
const auto end_time{system_clock::now()};
return duration_cast<milliseconds>(end_time - internal::start_time).count();
}
} // namespace workspace
#line 2 "Library/src/sys/ejection.hpp"
/**
* @file ejection.hpp
* @brief Ejection
*/
#line 9 "Library/src/sys/ejection.hpp"
namespace workspace {
namespace internal {
struct ejection {
bool exit = 0;
};
} // namespace internal
/**
* @brief eject from a try block, throw nullptr
* @param arg output
*/
template <class Tp> void eject(Tp const &arg) {
std::cout << arg << "\n";
throw internal::ejection{};
}
void exit() { throw internal::ejection{true}; }
} // namespace workspace
#line 2 "Library/src/sys/iteration.hpp"
/**
* @file iteration.hpp
* @brief Case Iteration
*/
#line 9 "Library/src/sys/iteration.hpp"
#line 11 "Library/src/sys/iteration.hpp"
namespace workspace {
void main();
struct {
// 1-indexed
unsigned current{0};
unsigned total{1};
void read() { (std::cin >> total).ignore(); }
int iterate() {
static bool once = false;
assert(!once);
once = true;
while (current++ < total) {
try {
main();
} catch (internal::ejection const& status) {
if (status.exit) break;
}
}
return 0;
}
} case_info;
} // namespace workspace
#line 2 "Library/src/utils/cat.hpp"
/**
* @file cat.hpp
* @brief Cat
*/
#line 9 "Library/src/utils/cat.hpp"
namespace workspace {
template <class C1, class C2>
constexpr C1 &&cat(C1 &&__c1, C2 const &__c2) noexcept {
__c1.insert(__c1.end(), std::begin(__c2), std::end(__c2));
return __c1;
}
} // namespace workspace
#line 2 "Library/src/utils/chval.hpp"
/*
* @file chval.hpp
* @brief Change Less/Greater
*/
#line 9 "Library/src/utils/chval.hpp"
namespace workspace {
/*
* @fn chle
* @brief Substitute y for x if comp(y, x) is true.
* @param x Reference
* @param y Const reference
* @param comp Compare function
* @return Whether or not x is updated
*/
template <class Tp, class Comp = std::less<Tp>>
bool chle(Tp &x, const Tp &y, Comp comp = Comp()) {
return comp(y, x) ? x = y, true : false;
}
/*
* @fn chge
* @brief Substitute y for x if comp(x, y) is true.
* @param x Reference
* @param y Const reference
* @param comp Compare function
* @return Whether or not x is updated
*/
template <class Tp, class Comp = std::less<Tp>>
bool chge(Tp &x, const Tp &y, Comp comp = Comp()) {
return comp(x, y) ? x = y, true : false;
}
} // namespace workspace
#line 2 "Library/src/utils/fixed_point.hpp"
/*
* @file fixed_point.hpp
* @brief Fixed Point Combinator
*/
#line 9 "Library/src/utils/fixed_point.hpp"
namespace workspace {
/*
* @class fixed_point
* @brief Recursive calling of lambda expression.
*/
template <class lambda_type> class fixed_point {
lambda_type func;
public:
/*
* @param func 1st arg callable with the rest of args, and the return type
* specified.
*/
fixed_point(lambda_type &&func) : func(std::move(func)) {}
/*
* @brief Recursively apply *this to 1st arg of func.
* @param args Arguments of the recursive method.
*/
template <class... Args> auto operator()(Args &&... args) const {
return func(*this, std::forward<Args>(args)...);
}
};
} // namespace workspace
#line 5 "Library/lib/utils"
// #include "src/utils/grid.hpp"
// #include "src/utils/hash.hpp"
#line 2 "Library/src/utils/io/istream.hpp"
/**
* @file istream.hpp
* @brief Input Stream
*/
#include <cxxabi.h>
#line 13 "Library/src/utils/io/istream.hpp"
#line 2 "Library/src/utils/sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#line 10 "Library/src/utils/sfinae.hpp"
#include <type_traits>
#ifndef __INT128_DEFINED__
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
#endif
} // namespace std
namespace workspace {
template <class Tp, class... Args> struct variadic_front { using type = Tp; };
template <class... Args> struct variadic_back;
template <class Tp> struct variadic_back<Tp> { using type = Tp; };
template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
using type = typename variadic_back<Args...>::type;
};
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
template <class Container>
using element_type = typename std::decay<decltype(
*std::begin(std::declval<Container&>()))>::type;
template <class T, class = std::nullptr_t>
struct has_begin : std::false_type {};
template <class T>
struct has_begin<T, decltype(std::begin(std::declval<T>()), nullptr)>
: std::true_type {};
template <class T, class = int> struct mapped_of {
using type = element_type<T>;
};
template <class T>
struct mapped_of<T,
typename std::pair<int, typename T::mapped_type>::first_type> {
using type = typename T::mapped_type;
};
template <class T> using mapped_type = typename mapped_of<T>::type;
template <class T, class = void> struct is_integral_ext : std::false_type {};
template <class T>
struct is_integral_ext<
T, typename std::enable_if<std::is_integral<T>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class T>
constexpr static bool is_integral_ext_v = is_integral_ext<T>::value;
#endif
template <typename T, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename T>
struct multiplicable_uint<
T, typename std::enable_if<(2 < sizeof(T)) &&
(!__INT128_DEFINED__ || sizeof(T) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename T>
struct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {
using type = __uint128_t;
};
#endif
template <typename T> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<T>::type>::type;
};
} // namespace workspace
#line 15 "Library/src/utils/io/istream.hpp"
namespace workspace {
namespace internal {
template <class Tp, typename = std::nullptr_t> struct istream_helper {
istream_helper(std::istream &is, Tp &x) {
if constexpr (has_begin<Tp>::value)
for (auto &&e : x)
istream_helper<typename std::decay<decltype(e)>::type>(is, e);
else
static_assert(has_begin<Tp>::value, "istream unsupported type.");
}
};
template <class Tp>
struct istream_helper<
Tp,
decltype(std::declval<std::decay<decltype(std::declval<std::istream &>() >>
std::declval<Tp &>())>>(),
nullptr)> {
istream_helper(std::istream &is, Tp &x) { is >> x; }
};
#ifdef __SIZEOF_INT128__
template <> struct istream_helper<__uint128_t, std::nullptr_t> {
istream_helper(std::istream &__is, __uint128_t &__x) {
std::string __s;
__is >> __s;
bool __neg = false;
if (__s.front() == '-') __neg = true, __s.erase(__s.begin());
__x = 0;
for (char __d : __s) {
__x *= 10;
__d -= '0';
if (__neg)
__x -= __d;
else
__x += __d;
}
}
};
template <> struct istream_helper<__int128_t, std::nullptr_t> {
istream_helper(std::istream &__is, __int128_t &__x) {
std::string __s;
__is >> __s;
bool __neg = false;
if (__s.front() == '-') __neg = true, __s.erase(__s.begin());
__x = 0;
for (char __d : __s) {
__x *= 10;
__d -= '0';
if (__neg)
__x -= __d;
else
__x += __d;
}
}
};
#endif // INT128
template <class T1, class T2> struct istream_helper<std::pair<T1, T2>> {
istream_helper(std::istream &is, std::pair<T1, T2> &x) {
istream_helper<T1>(is, x.first), istream_helper<T2>(is, x.second);
}
};
template <class... Tps> struct istream_helper<std::tuple<Tps...>> {
istream_helper(std::istream &is, std::tuple<Tps...> &x) { iterate(is, x); }
private:
template <class Tp, size_t N = 0> void iterate(std::istream &is, Tp &x) {
if constexpr (N == std::tuple_size<Tp>::value)
return;
else
istream_helper<typename std::tuple_element<N, Tp>::type>(is,
std::get<N>(x)),
iterate<Tp, N + 1>(is, x);
}
};
} // namespace internal
/**
* @brief A wrapper class for std::istream.
*/
class istream : public std::istream {
public:
/**
* @brief Wrapped operator.
*/
template <typename Tp> istream &operator>>(Tp &x) {
internal::istream_helper<Tp>(*this, x);
if (std::istream::fail()) {
static auto once = atexit([] {
std::cerr << "\n\033[43m\033[30mwarning: failed to read \'"
<< abi::__cxa_demangle(typeid(Tp).name(), 0, 0, 0)
<< "\'.\033[0m\n\n";
});
assert(!once);
}
return *this;
}
};
namespace internal {
auto *const cin_ptr = (istream *)&std::cin;
}
auto &cin = *internal::cin_ptr;
} // namespace workspace
#line 2 "Library/src/utils/io/ostream.hpp"
/**
* @file ostream.hpp
* @brief Output Stream
*/
#line 9 "Library/src/utils/io/ostream.hpp"
namespace workspace {
/**
* @brief Stream insertion operator for std::pair.
*
* @param __os Output stream
* @param __p Pair
* @return Reference to __os.
*/
template <class Os, class T1, class T2>
Os &operator<<(Os &__os, const std::pair<T1, T2> &__p) {
return __os << __p.first << ' ' << __p.second;
}
/**
* @brief Stream insertion operator for std::tuple.
*
* @param __os Output stream
* @param __t Tuple
* @return Reference to __os.
*/
template <class Os, class Tp, size_t N = 0>
typename std::enable_if<bool(std::tuple_size<Tp>::value + 1), Os &>::type
operator<<(Os &__os, const Tp &__t) {
if constexpr (N != std::tuple_size<Tp>::value) {
if constexpr (N) __os << ' ';
__os << std::get<N>(__t);
operator<<<Os, Tp, N + 1>(__os, __t);
}
return __os;
}
template <class Os, class Container,
typename = decltype(std::begin(std::declval<Container>()))>
typename std::enable_if<
!std::is_same<typename std::decay<Container>::type, std::string>::value &&
!std::is_same<typename std::decay<Container>::type, char *>::value,
Os &>::type
operator<<(Os &__os, const Container &__cont) {
bool __h = true;
for (auto &&__e : __cont) __h ? __h = 0 : (__os << ' ', 0), __os << __e;
return __os;
}
#ifdef __SIZEOF_INT128__
/**
* @brief Stream insertion operator for __int128_t.
*
* @param __os Output Stream
* @param __x 128-bit integer
* @return Reference to __os.
*/
template <class Os> Os &operator<<(Os &__os, __int128_t __x) {
if (!__x) return __os << '0';
if (__x < 0) __os << '-';
char __s[40], *__p = __s;
while (__x) {
auto __d = __x % 10;
*__p++ = '0' + (__x < 0 ? -__d : __d);
__x /= 10;
}
*__p = 0;
for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p;
return __os << __s;
}
/**
* @brief Stream insertion operator for __uint128_t.
*
* @param __os Output Stream
* @param __x 128-bit unsigned integer
* @return Reference to __os.
*/
template <class Os> Os &operator<<(Os &__os, __uint128_t __x) {
if (!__x) return __os << '0';
char __s[40], *__p = __s;
while (__x) *__p++ = '0' + __x % 10, __x /= 10;
*__p = 0;
for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p;
return __os << __s;
}
#endif
} // namespace workspace
#line 9 "Library/lib/utils"
// #include "src/utils/io/read.hpp"
#line 2 "Library/src/utils/io/setup.hpp"
/*
* @file setup.hpp
* @brief I/O Setup
*/
#line 10 "Library/src/utils/io/setup.hpp"
namespace workspace {
/*
* @fn io_setup
* @brief Setup I/O.
* @param precision Standard output precision
*/
void io_setup(int precision) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(precision);
#ifdef _buffer_check
atexit([] {
char bufc;
if (std::cin >> bufc)
std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n";
});
#endif
}
} // namespace workspace
#line 2 "Library/src/utils/iterator/category.hpp"
/*
* @file category.hpp
* @brief Iterator Category
*/
#line 10 "Library/src/utils/iterator/category.hpp"
namespace workspace {
/*
* @tparam Tuple Tuple of iterator types
*/
template <class Tuple, size_t N = std::tuple_size<Tuple>::value - 1>
struct common_iterator_category {
using type = typename std::common_type<
typename common_iterator_category<Tuple, N - 1>::type,
typename std::iterator_traits<typename std::tuple_element<
N, Tuple>::type>::iterator_category>::type;
};
template <class Tuple> struct common_iterator_category<Tuple, 0> {
using type = typename std::iterator_traits<
typename std::tuple_element<0, Tuple>::type>::iterator_category;
};
} // namespace workspace
#line 12 "Library/lib/utils"
// #include "src/utils/iterator/reverse.hpp"
#line 2 "Library/src/utils/make_vector.hpp"
/*
* @file make_vector.hpp
* @brief Multi-dimensional Vector
*/
#if __cplusplus >= 201703L
#include <tuple>
#include <vector>
namespace workspace {
/*
* @brief Make a multi-dimensional vector.
* @tparam Tp type of the elements
* @tparam N dimension
* @tparam S integer type
* @param sizes The size of each dimension
* @param init The initial value
*/
template <typename Tp, size_t N, typename S>
constexpr auto make_vector([[maybe_unused]] S* sizes, Tp const& init = Tp()) {
static_assert(std::is_convertible_v<S, size_t>);
if constexpr (N)
return std::vector(*sizes,
make_vector<Tp, N - 1, S>(std::next(sizes), init));
else
return init;
}
/*
* @brief Make a multi-dimensional vector.
* @param sizes The size of each dimension
* @param init The initial value
*/
template <typename Tp, size_t N, typename S>
constexpr auto make_vector(const S (&sizes)[N], Tp const& init = Tp()) {
return make_vector<Tp, N, S>((S*)sizes, init);
}
/*
* @brief Make a multi-dimensional vector.
* @param sizes The size of each dimension
* @param init The initial value
*/
template <typename Tp, size_t N, typename S, size_t I = 0>
constexpr auto make_vector([[maybe_unused]] std::array<S, N> const& sizes,
Tp const& init = Tp()) {
static_assert(std::is_convertible_v<S, size_t>);
if constexpr (I == N)
return init;
else
return std::vector(sizes[I], make_vector<Tp, N, S, I + 1>(sizes, init));
}
/*
* @brief Make a multi-dimensional vector.
* @param sizes The size of each dimension
* @param init The initial value
*/
template <typename Tp, size_t N = SIZE_MAX, size_t I = 0, class... Args>
constexpr auto make_vector([[maybe_unused]] std::tuple<Args...> const& sizes,
Tp const& init = Tp()) {
using tuple_type = std::tuple<Args...>;
if constexpr (I == std::tuple_size_v<tuple_type> || I == N)
return init;
else {
static_assert(
std::is_convertible_v<std::tuple_element_t<I, tuple_type>, size_t>);
return std::vector(std::get<I>(sizes),
make_vector<Tp, N, I + 1>(sizes, init));
}
}
/*
* @brief Make a multi-dimensional vector.
* @param sizes The size of each dimension
* @param init The initial value
*/
template <typename Tp, class Fst, class Snd>
constexpr auto make_vector(std::pair<Fst, Snd> const& sizes,
Tp const& init = Tp()) {
static_assert(std::is_convertible_v<Fst, size_t>);
static_assert(std::is_convertible_v<Snd, size_t>);
return make_vector({(size_t)sizes.first, (size_t)sizes.second}, init);
}
} // namespace workspace
#endif
#line 2 "Library/src/utils/py-like/enumerate.hpp"
/*
* @file enumerate.hpp
* @brief Enumerate
*/
#line 2 "Library/src/utils/py-like/range.hpp"
/**
* @file range.hpp
* @brief Range
*/
#line 9 "Library/src/utils/py-like/range.hpp"
#line 2 "Library/src/utils/iterator/reverse.hpp"
/*
* @file reverse_iterator.hpp
* @brief Reverse Iterator
*/
#if __cplusplus >= 201703L
#include <iterator>
#include <optional>
namespace workspace {
/*
* @class reverse_iterator
* @brief Wrapper class for `std::reverse_iterator`.
* @see http://gcc.gnu.org/PR51823
*/
template <class Iterator>
class reverse_iterator : public std::reverse_iterator<Iterator> {
using base_std = std::reverse_iterator<Iterator>;
std::optional<typename base_std::value_type> deref;
public:
using base_std::reverse_iterator;
constexpr typename base_std::reference operator*() noexcept {
if (!deref) {
Iterator tmp = base_std::current;
deref = *--tmp;
}
return deref.value();
}
constexpr reverse_iterator &operator++() noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator &operator--() noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator operator++(int) noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator operator--(int) noexcept {
base_std::operator++();
deref.reset();
return *this;
}
};
} // namespace workspace
#endif
#line 2 "Library/src/utils/py-like/reversed.hpp"
/**
* @file reversed.hpp
* @brief Reversed
*/
#include <initializer_list>
#line 10 "Library/src/utils/py-like/reversed.hpp"
namespace workspace {
namespace internal {
template <class Container> class reversed {
Container cont;
public:
constexpr reversed(Container &&cont) : cont(cont) {}
constexpr auto begin() { return std::rbegin(cont); }
constexpr auto end() { return std::rend(cont); }
};
} // namespace internal
template <class Container> constexpr auto reversed(Container &&cont) noexcept {
return internal::reversed<Container>{std::forward<Container>(cont)};
}
template <class Tp>
constexpr auto reversed(std::initializer_list<Tp> &&cont) noexcept {
return internal::reversed<std::initializer_list<Tp>>{
std::forward<std::initializer_list<Tp>>(cont)};
}
} // namespace workspace
#line 12 "Library/src/utils/py-like/range.hpp"
#if __cplusplus >= 201703L
namespace workspace {
template <class Index> class range {
Index first, last;
public:
class iterator {
Index current;
public:
using difference_type = std::ptrdiff_t;
using value_type = Index;
using reference = typename std::add_const<Index>::type &;
using pointer = iterator;
using iterator_category = std::bidirectional_iterator_tag;
constexpr iterator(Index const &__i = Index()) noexcept : current(__i) {}
constexpr bool operator==(iterator const &rhs) const noexcept {
return current == rhs.current;
}
constexpr bool operator!=(iterator const &rhs) const noexcept {
return current != rhs.current;
}
constexpr iterator &operator++() noexcept {
++current;
return *this;
}
constexpr iterator &operator--() noexcept {
--current;
return *this;
}
constexpr reference operator*() const noexcept { return current; }
};
constexpr range(Index first, Index last) noexcept
: first(first), last(last) {}
constexpr range(Index last) noexcept : first(), last(last) {}
constexpr iterator begin() const noexcept { return iterator{first}; }
constexpr iterator end() const noexcept { return iterator{last}; }
constexpr reverse_iterator<iterator> rbegin() const noexcept {
return reverse_iterator<iterator>(end());
}
constexpr reverse_iterator<iterator> rend() const noexcept {
return reverse_iterator<iterator>(begin());
}
};
template <class... Args> constexpr auto rrange(Args &&... args) noexcept {
return internal::reversed(range(std::forward<Args>(args)...));
}
} // namespace workspace
#endif
#line 2 "Library/src/utils/py-like/zip.hpp"
/**
* @file zip.hpp
* @brief Zip
*/
#line 11 "Library/src/utils/py-like/zip.hpp"
#line 14 "Library/src/utils/py-like/zip.hpp"
#if __cplusplus >= 201703L
namespace workspace {
namespace internal {
template <class> struct zipped_iterator;
template <class...> struct zipped_iterator_tuple;
template <class... Args> class zipped {
using ref_tuple = std::tuple<Args...>;
ref_tuple args;
template <size_t N = 0> constexpr auto begin_cat() const noexcept {
if constexpr (N != std::tuple_size<ref_tuple>::value) {
return std::tuple_cat(std::tuple(std::begin(std::get<N>(args))),
begin_cat<N + 1>());
} else
return std::tuple<>();
}
template <size_t N = 0> constexpr auto end_cat() const noexcept {
if constexpr (N != std::tuple_size<ref_tuple>::value) {
return std::tuple_cat(std::tuple(std::end(std::get<N>(args))),
end_cat<N + 1>());
} else
return std::tuple<>();
}
public:
constexpr zipped(Args &&... args) noexcept : args(args...) {}
class iterator {
using base_tuple = typename zipped_iterator_tuple<Args...>::type;
public:
using iterator_category =
typename common_iterator_category<base_tuple>::type;
using difference_type = std::ptrdiff_t;
using value_type = zipped_iterator<base_tuple>;
using reference = zipped_iterator<base_tuple> &;
using pointer = iterator;
protected:
value_type current;
template <size_t N = 0>
constexpr bool equal(const iterator &rhs) const noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
return std::get<N>(current) == std::get<N>(rhs.current) ||
equal<N + 1>(rhs);
} else
return false;
}
template <size_t N = 0> constexpr void increment() noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
++std::get<N>(current);
increment<N + 1>();
}
}
template <size_t N = 0> constexpr void decrement() noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
--std::get<N>(current);
decrement<N + 1>();
}
}
template <size_t N = 0>
constexpr void advance(difference_type __d) noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
std::get<N>(current) += __d;
advance<N + 1>(__d);
}
}
public:
constexpr iterator() noexcept = default;
constexpr iterator(base_tuple const &current) noexcept : current(current) {}
constexpr bool operator==(const iterator &rhs) const noexcept {
return equal(rhs);
}
constexpr bool operator!=(const iterator &rhs) const noexcept {
return !equal(rhs);
}
constexpr iterator &operator++() noexcept {
increment();
return *this;
}
constexpr iterator &operator--() noexcept {
decrement();
return *this;
}
constexpr bool operator<(const iterator &rhs) const noexcept {
return std::get<0>(current) < std::get<0>(rhs.current);
}
constexpr bool operator<=(const iterator &rhs) const noexcept {
return std::get<0>(current) <= std::get<0>(rhs.current);
}
constexpr iterator &operator+=(difference_type __d) noexcept {
advance(__d);
return *this;
}
constexpr iterator &operator-=(difference_type __d) noexcept {
advance(-__d);
return *this;
}
constexpr iterator operator+(difference_type __d) const noexcept {
return iterator{*this} += __d;
}
constexpr iterator operator-(difference_type __d) const noexcept {
return iterator{*this} -= __d;
}
constexpr difference_type operator-(const iterator &rhs) const noexcept {
return std::get<0>(current) - std::get<0>(rhs.current);
}
constexpr reference operator*() noexcept { return current; }
};
constexpr iterator begin() const noexcept { return iterator{begin_cat()}; }
constexpr iterator end() const noexcept { return iterator{end_cat()}; }
constexpr reverse_iterator<iterator> rbegin() const noexcept {
return reverse_iterator<iterator>{end()};
}
constexpr reverse_iterator<iterator> rend() const noexcept {
return reverse_iterator<iterator>{begin()};
}
};
template <class Tp, class... Args> struct zipped_iterator_tuple<Tp, Args...> {
using type = decltype(std::tuple_cat(
std::declval<std::tuple<decltype(std::begin(std::declval<Tp>()))>>(),
std::declval<typename zipped_iterator_tuple<Args...>::type>()));
};
template <> struct zipped_iterator_tuple<> { using type = std::tuple<>; };
template <class Iter_tuple> struct zipped_iterator : Iter_tuple {
constexpr zipped_iterator(Iter_tuple const &__t) noexcept
: Iter_tuple::tuple(__t) {}
constexpr zipped_iterator(zipped_iterator const &__t) = default;
constexpr zipped_iterator &operator=(zipped_iterator const &__t) = default;
// Avoid move initialization.
constexpr zipped_iterator(zipped_iterator &&__t)
: zipped_iterator(static_cast<zipped_iterator const &>(__t)) {}
// Avoid move assignment.
zipped_iterator &operator=(zipped_iterator &&__t) {
return operator=(static_cast<zipped_iterator const &>(__t));
}
template <size_t N>
friend constexpr auto &get(zipped_iterator<Iter_tuple> const &__z) noexcept {
return *std::get<N>(__z);
}
template <size_t N>
friend constexpr auto get(zipped_iterator<Iter_tuple> &&__z) noexcept {
return *std::get<N>(__z);
}
};
} // namespace internal
} // namespace workspace
namespace std {
template <size_t N, class Iter_tuple>
struct tuple_element<N, workspace::internal::zipped_iterator<Iter_tuple>> {
using type = typename remove_reference<typename iterator_traits<
typename tuple_element<N, Iter_tuple>::type>::reference>::type;
};
template <class Iter_tuple>
struct tuple_size<workspace::internal::zipped_iterator<Iter_tuple>>
: tuple_size<Iter_tuple> {};
} // namespace std
namespace workspace {
template <class... Args> constexpr auto zip(Args &&... args) noexcept {
return internal::zipped<Args...>(std::forward<Args>(args)...);
}
template <class... Args>
constexpr auto zip(std::initializer_list<Args> const &... args) noexcept {
return internal::zipped<const std::initializer_list<Args>...>(args...);
}
} // namespace workspace
#endif
#line 10 "Library/src/utils/py-like/enumerate.hpp"
#if __cplusplus >= 201703L
namespace workspace {
constexpr size_t min_size() noexcept { return SIZE_MAX; }
template <class Container, class... Args>
constexpr size_t min_size(Container const &cont, Args &&... args) noexcept {
return std::min(std::size(cont), min_size(std::forward<Args>(args)...));
}
template <class... Args> constexpr auto enumerate(Args &&... args) noexcept {
return zip(range(min_size(args...)), std::forward<Args>(args)...);
}
template <class... Args>
constexpr auto enumerate(std::initializer_list<Args> const &... args) noexcept {
return zip(range(min_size(args...)), std::vector(args)...);
}
} // namespace workspace
#endif
#line 16 "Library/lib/utils"
// #include "src/utils/py-like/reversed.hpp"
#line 18 "Library/lib/utils"
// #include "src/utils/rand/rng.hpp"
// #include "src/utils/rand/shuffle.hpp"
// #include "src/utils/round_div.hpp"
// #include "src/utils/sfinae.hpp"
#line 12 "atcoder-workspace/a.cc"
signed main() {
using namespace workspace;
io_setup(15);
/* given
case_info.read(); //*/
/* unspecified
case_info.total = -1; //*/
return case_info.iterate();
}
#line 2 "Library/src/data_structure/segment_tree/basic.hpp"
/**
* @file basic.hpp
* @brief Segment Tree
*/
#line 10 "Library/src/data_structure/segment_tree/basic.hpp"
#if __cplusplus >= 201703L
#include <optional>
#endif
#line 2 "Library/src/algebra/system/monoid.hpp"
/*
* @file monoid.hpp
* @brief Monoid
*/
#line 9 "Library/src/algebra/system/monoid.hpp"
namespace workspace {
template <class T, class E = T> struct min_monoid {
using value_type = T;
static T min, max;
T value;
min_monoid() : value(max) {}
min_monoid(const T &value) : value(value) {}
operator T() const { return value; }
min_monoid operator+(const min_monoid &rhs) const {
return value < rhs.value ? *this : rhs;
}
min_monoid operator*(const E &rhs) const;
};
template <class T, class E>
T min_monoid<T, E>::min = std::numeric_limits<T>::min() / 2;
template <class T, class E>
T min_monoid<T, E>::max = std::numeric_limits<T>::max() / 2;
template <class T, class E = T> struct max_monoid : min_monoid<T, E> {
using base = min_monoid<T, E>;
using base::min_monoid;
max_monoid() : base(base::min) {}
max_monoid operator+(const max_monoid &rhs) const {
return !(base::value < rhs.value) ? *this : rhs;
}
max_monoid operator*(const E &rhs) const;
};
} // namespace workspace
#line 16 "Library/src/data_structure/segment_tree/basic.hpp"
namespace workspace {
namespace segtree_impl {
template <class Monoid, class Node,
template <class...> class Container_tmpl = std::vector>
struct base {
static_assert(std::is_same<Monoid, decltype(std::declval<Monoid>() +
std::declval<Monoid>())>::value,
"\'Monoid\' has no proper binary \'operator+\'.");
using container_type = Container_tmpl<Node>;
using size_type = typename container_type::size_type;
class iterator {
base *__p;
size_type __i;
public:
using difference_type = typename std::make_signed<size_type>::type;
using value_type = Monoid;
using reference = Monoid &;
using pointer = iterator;
using iterator_category = std::random_access_iterator_tag;
/**
* @brief Construct a new iterator object
*
*/
iterator() = default;
/**
* @brief Construct a new iterator object
*
* @param __p Pointer to a segment tree object
* @param __i Index
*/
iterator(base *__p, size_type __i) : __p(__p), __i(__i) {}
bool operator==(iterator const &rhs) const {
return __p == rhs.__p && __i == rhs.__i;
}
bool operator!=(iterator const &rhs) const { return !operator==(rhs); }
bool operator<(iterator const &rhs) const { return __i < rhs.__i; }
bool operator>(iterator const &rhs) const { return __i > rhs.__i; }
bool operator<=(iterator const &rhs) const { return __i <= rhs.__i; }
bool operator>=(iterator const &rhs) const { return __i >= rhs.__i; }
iterator &operator++() { return ++__i, *this; }
iterator &operator--() { return --__i, *this; }
difference_type operator-(iterator const &rhs) const {
return __i - rhs.__i;
}
/**
* @brief
*
* @return reference
*/
reference operator*() const { return __p->operator[](__i); }
};
iterator begin() { return {this, 0}; }
iterator end() { return {this, size_orig}; }
auto rbegin() { return std::make_reverse_iterator(end()); }
auto rend() { return std::make_reverse_iterator(begin()); }
using value_type = typename iterator::value_type;
using reference = typename iterator::reference;
/**
* @brief Construct a new segment tree object
*
* @param __n Number of elements.
*/
base(size_type __n = 0)
: size_orig{__n},
height(__n > 1 ? 64 - __builtin_clzll(__n - 1) : 0),
size_ext{size_type{1} << height} {
if constexpr (std::is_constructible<container_type, size_t>::value)
data = container_type(size_ext << 1);
data[0].reset();
}
/**
* @brief Construct a new segment tree object
*
* @tparam Tp
* @param __n Number of elements.
* @param init
*/
template <class Tp, typename std::enable_if<std::is_convertible<
Tp, Monoid>::value>::type * = nullptr>
base(size_type __n, Tp const &init) : base(__n) {
for (auto i = begin(); i != end(); ++i) *i = init;
}
/**
* @brief Construct a new segment tree object
*
* @tparam Iterator
* @param __first
* @param __last
*/
template <class Iterator,
typename std::enable_if<std::is_convertible<
typename std::iterator_traits<Iterator>::value_type,
Monoid>::value> * = nullptr>
base(Iterator __first, Iterator __last)
: base(std::distance(__first, __last)) {
for (auto i = begin(); __first != __last; ++i, ++__first) *i = *__first;
}
/**
* @return Number of elements.
*/
size_type size() const { return size_orig; }
/**
* @param __i Index of the element
* @return Reference to the element.
*/
virtual reference operator[](size_type __i) {
assert(__i < size_orig);
reference __ref = *data[__i |= size_ext];
while (data[__i >>= 1]) data[__i].reset();
return __ref;
}
/**
* @param first Left end, inclusive
* @param last Right end, exclusive
* @return Sum of elements in the interval.
*/
value_type fold(size_type first, size_type last) {
assert(last <= size_orig);
if (!(first < last)) return {};
first += size_ext, last += size_ext;
if constexpr (lazy_tag)
for (auto __i{height}, __fp{first}, __lp{last - 1}; __i; --__i)
push(__fp >> __i), push(__lp >> __i);
Monoid left{}, right{};
while (first < last) {
if (first & 1) left = left + *pull(first++);
if (last & 1) right = *pull(--last) + right;
first >>= 1, last >>= 1;
// if constexpr (lazy_tag) {
// if (auto const &__z = data[__fp >>= 1].__z) left = left * *__z;
// if (auto const &__z = data[__lp >>= 1].__z) right = right * *__z;
// }
}
// if constexpr (lazy_tag)
// while (__fp >>= 1, __lp >>= 1) {
// if (auto const &__z = data[__fp].__z) left = left * *__z;
// if (auto const &__z = data[__lp].__z) right = right * *__z;
// }
return left + right;
}
/**
* @return The whole sum.
*/
value_type fold() { return fold(0, size_orig); }
/**
* @brief Binary search for the partition point.
* @param right Right fixed end of the interval, exclusive
* @param pred Predicate in the form of either 'bool(Monoid)' or 'bool(Monoid,
* size_type)'
* @return Left end of the extremal interval satisfying the condition,
* inclusive.
*/
template <class Pred> size_type left_partition(size_type right, Pred pred) {
assert(right <= size_orig);
right += size_ext;
Monoid mono{};
if constexpr (lazy_tag)
for (size_t i{height}; i; --i) push(right >> i);
for (size_type left{size_ext}, step{}; left != right;
left >>= 1, right >>= 1, ++step) {
if ((left & 1) != (right & 1)) {
const Monoid tmp = *pull(--right) + mono;
if (!pass_args(pred, tmp, (right << step) ^ size_ext))
return left_partition_subtree(right, mono, step, pred);
mono = tmp;
}
}
return 0;
}
/**
* @brief Binary search for the partition point.
* @param left Left fixed end of the interval, inclusive
* @param pred Predicate in the form of either 'bool(Monoid)' or 'bool(Monoid,
* size_type)'
* @return Right end of the extremal interval satisfying the condition,
* exclusive.
*/
template <class Pred> size_type right_partition(size_type left, Pred pred) {
assert(left <= size_orig);
left += size_ext;
Monoid mono{};
if constexpr (lazy_tag)
for (size_t i{height}; i; --i) push(left >> i);
for (size_type right{size_ext << 1}, step{}; left != right;
left >>= 1, right >>= 1, ++step) {
if ((left & 1) != (right & 1)) {
const Monoid tmp = mono + *pull(left);
if (!pass_args(pred, tmp, ((left + 1) << step) ^ size_ext))
return right_partition_subtree(left, mono, step, pred);
mono = tmp;
++left;
}
}
return size_orig;
}
protected:
constexpr static bool lazy_tag = Node::lazy_tag;
size_type size_orig, height, size_ext;
container_type data;
virtual void push(size_type) noexcept {}
Node &pull(size_type __i) noexcept {
if (!data[__i]) data[__i] = *pull(__i << 1) + *pull(__i << 1 | 1);
return data[__i];
}
template <class Pred>
size_type left_partition_subtree(size_type __i, Monoid mono, size_type step,
Pred pred) {
assert(__i);
while (__i < size_ext) {
if constexpr (lazy_tag) push(__i);
const Monoid tmp = *pull((__i <<= 1) | 1) + mono;
if (pass_args(pred, tmp, ((__i | 1) << --step) ^ size_ext))
mono = tmp;
else
++__i;
}
return ++__i -= size_ext;
}
template <class Pred>
size_type right_partition_subtree(size_type __i, Monoid mono, size_type step,
Pred pred) {
assert(__i);
while (__i < size_ext) {
if constexpr (lazy_tag) push(__i);
const Monoid tmp = mono + *pull(__i <<= 1);
if (pass_args(pred, tmp, ((__i | 1) << --step) ^ size_ext))
++__i, mono = tmp;
}
return (__i -= size_ext) < size_orig ? __i : size_orig;
}
template <class Pred>
constexpr decltype(std::declval<Pred>()(Monoid{})) pass_args(
Pred pred, Monoid const &_1, [[maybe_unused]] size_type _2) {
return pred(_1);
}
template <class Pred>
constexpr decltype(std::declval<Pred>()(Monoid{}, size_type{})) pass_args(
Pred pred, Monoid const &_1, size_type _2) {
return pred(_1, _2);
}
};
#if __cplusplus < 201703L
template <class Tp> struct node {
constexpr static bool lazy_tag = false;
node() = default;
node(Tp const &__x) : __v(__x) {}
operator bool() const { return __f; }
void operator=(Tp const &__x) {
__v = __x;
__f = true;
}
Tp &operator*() { return __v; }
Tp const &operator*() const { return __v; }
void reset() { __f = false; }
private:
Tp __v{};
bool __f{true};
};
template <class Tp1, class Tp2> struct lazy_node : node<Tp1> {
constexpr static bool lazy_tag = true;
node<Tp2> __z;
};
#else
template <class Tp> struct node : std::optional<Tp> {
constexpr static bool lazy_tag = false;
using std::optional<Tp>::operator=;
node() : std::optional<Tp>(Tp{}) {}
};
template <class Tp1, class Tp2> struct lazy_node : node<Tp1> {
constexpr static bool lazy_tag = true;
using node<Tp1>::operator=;
std::optional<Tp2> __z;
};
#endif
template <class Monoid, class Endomorphism,
template <class...> class Container_tmpl = std::vector>
struct [[deprecated]] lazy
: base<Monoid, lazy_node<Monoid, Endomorphism>, Container_tmpl> {
using _base = base<Monoid, lazy_node<Monoid, Endomorphism>, Container_tmpl>;
using size_type = typename _base::size_type;
using _base::base;
void update(size_type first, size_type last, Endomorphism const &endo) {
assert(last <= _base::size_orig);
if (first >= last) return;
first += _base::size_ext, last += _base::size_ext - 1;
for (auto i = _base::height; i; --i) push(first >> i), push(last >> i);
for (auto l = first, r = last + 1;; l >>= 1, r >>= 1) {
if (l < r) {
if (l & 1) apply_top(l++, endo);
if (r & 1) apply_top(--r, endo);
}
if (first >>= 1, last >>= 1) {
// _base::data[first].reset();
// _base::data[last].reset();
pull_f(first);
pull_f(last);
} else
break;
}
}
protected:
void pull_f(size_type __i) {
_base::data[__i] = *_base::pull(__i << 1) + *_base::pull(__i << 1 | 1);
}
void push(size_type __i) noexcept override {
if (auto &__lz = _base::data[__i].__z) {
apply(__i <<= 1, *__lz);
apply(__i |= 1, *__lz);
__lz.reset();
}
}
void apply(size_type __i, Endomorphism const &__e) noexcept {
auto &__nd = _base::data[__i];
*__nd = *__nd * __e;
if (__i < _base::size_ext) __nd.__z = __nd.__z ? *__nd.__z * __e : __e;
}
void apply_top(size_type __i, Endomorphism const &__e) noexcept {
auto &__nd = _base::pull(__i);
*__nd = *__nd * __e;
if (__i < _base::size_ext) __nd.__z = __nd.__z ? *__nd.__z * __e : __e;
}
};
} // namespace segtree_impl
template <class Monoid, class Endomorphism = void,
template <class...> class Container_tmpl = std::vector>
using _segment_tree = typename std::conditional<
std::is_void<Endomorphism>::value,
segtree_impl::base<Monoid, segtree_impl::node<Monoid>, Container_tmpl>,
segtree_impl::lazy<Monoid, Endomorphism, Container_tmpl>>::type;
/**
* @tparam Monoid `operator+`, `operator=`
* @tparam Container_tmpl `operator[]`, `size_type`
*/
template <class Monoid, class Endomorphism = void,
template <class...> class Container_tmpl = std::vector>
class segment_tree {
static_assert(std::is_same<Monoid, decltype(std::declval<Monoid>() +
std::declval<Monoid>())>::value,
"\'Monoid\' has no proper binary \'operator+\'.");
constexpr static bool __support_lazy = !std::is_void<Endomorphism>::value;
#if __cplusplus < 201703L
struct node_base {
node_base() = default;
node_base(Monoid const &__x) : __v(__x) {}
operator bool() const { return __f; }
void operator=(Monoid const &__x) {
__v = __x;
__f = true;
}
Monoid &operator*() { return __v; }
Monoid const &operator*() const { return __v; }
void reset() { __f = false; }
private:
Monoid __v{};
bool __f{true};
};
#else
struct node_base : std::optional<Monoid> {
using std::optional<Monoid>::operator=;
node_base() : std::optional<Monoid>(Monoid{}) {}
};
#endif
struct node_lazy : node_base {
using node_base::operator=;
std::optional<Endomorphism> __z;
};
using node =
typename std::conditional<__support_lazy, node_lazy, node_base>::type;
using container_type = Container_tmpl<node>;
public:
using size_type = typename container_type::size_type;
class iterator {
segment_tree *__p;
size_type __i;
public:
using difference_type = typename std::make_signed<size_type>::type;
using value_type = Monoid;
using reference = Monoid &;
using pointer = iterator;
using iterator_category = std::random_access_iterator_tag;
/**
* @brief Construct a new iterator object
*
*/
iterator() = default;
/**
* @brief Construct a new iterator object
*
* @param __p Pointer to a segment tree object
* @param __i Index
*/
iterator(segment_tree *__p, size_type __i) : __p(__p), __i(__i) {}
bool operator==(iterator const &rhs) const {
return __p == rhs.__p && __i == rhs.__i;
}
bool operator!=(iterator const &rhs) const { return !operator==(rhs); }
bool operator<(iterator const &rhs) const { return __i < rhs.__i; }
bool operator>(iterator const &rhs) const { return __i > rhs.__i; }
bool operator<=(iterator const &rhs) const { return __i <= rhs.__i; }
bool operator>=(iterator const &rhs) const { return __i >= rhs.__i; }
iterator &operator++() { return ++__i, *this; }
iterator &operator--() { return --__i, *this; }
difference_type operator-(iterator const &rhs) const {
return __i - rhs.__i;
}
/**
* @brief
*
* @return reference
*/
reference operator*() const { return __p->operator[](__i); }
};
using value_type = typename iterator::value_type;
using reference = typename iterator::reference;
iterator begin() { return {this, 0}; }
iterator end() { return {this, size_orig}; }
auto rbegin() { return std::make_reverse_iterator(end()); }
auto rend() { return std::make_reverse_iterator(begin()); }
protected:
size_type size_orig, height, size_ext;
container_type data;
node &pull(size_type __i) noexcept {
if (!data[__i]) data[__i] = *pull(__i << 1) + *pull(__i << 1 | 1);
return data[__i];
}
void push(size_type __i) {
if (auto &__lz = data[__i].__z) {
apply(data[__i << 1], *__lz);
apply(data[__i << 1 | 1], *__lz);
__lz.reset();
}
}
void sync(size_type __i) {
if (!data[__i])
data[__i] = *pull(__i << 1) + *pull(__i << 1 | 1);
else if (data[__i].__z) {
apply(data[__i << 1], *data[__i].__z);
apply(data[__i << 1 | 1], *data[__i].__z);
data[__i].__z.reset();
}
}
template <class _End = Endomorphism>
void apply(node &__nd, _End const &endo) {
*__nd = *__nd * endo;
__nd.__z = __nd.__z ? *__nd.__z * endo : endo;
}
// template <class _End = Endomorphism>
// void apply_top(size_t __i, _End const &endo) {
// auto &__nd = pull(__i);
// *__nd = *__nd * endo;
// __nd.__z = __nd.__z ? *__nd.__z * endo : endo;
// }
template <class Pred>
constexpr decltype(std::declval<Pred>()(Monoid{})) pass_args(
Pred pred, Monoid const &_1, [[maybe_unused]] size_type _2) {
return pred(_1);
}
template <class Pred>
constexpr decltype(std::declval<Pred>()(Monoid{}, size_type{})) pass_args(
Pred pred, Monoid const &_1, size_type _2) {
return pred(_1, _2);
}
template <class Pred>
size_type left_partition_subtree(size_type __i, Monoid mono, size_type step,
Pred pred) {
assert(__i);
while (__i < size_ext) {
if constexpr (__support_lazy) push(__i);
const Monoid tmp = *pull((__i <<= 1) | 1) + mono;
if (pass_args(pred, tmp, ((__i | 1) << --step) ^ size_ext))
mono = tmp;
else
++__i;
}
return ++__i -= size_ext;
}
template <class Pred>
size_type right_partition_subtree(size_type __i, Monoid mono, size_type step,
Pred pred) {
assert(__i);
while (__i < size_ext) {
if constexpr (__support_lazy) push(__i);
const Monoid tmp = mono + *pull(__i <<= 1);
if (pass_args(pred, tmp, ((__i | 1) << --step) ^ size_ext))
++__i, mono = tmp;
}
return (__i -= size_ext) < size_orig ? __i : size_orig;
}
public:
/**
* @brief Construct a new segment tree object
*
* @param __n Number of elements.
*/
segment_tree(size_type __n = 0)
: size_orig{__n},
height(__n > 1 ? 64 - __builtin_clzll(__n - 1) : 0),
size_ext{size_type{1} << height} {
if constexpr (std::is_constructible<container_type, size_t>::value)
data = container_type(size_ext << 1);
data[0].reset();
}
/**
* @brief Construct a new segment tree object
*
* @param __n Number of elements.
* @param init
*/
segment_tree(size_type __n, Monoid const &init) : segment_tree(__n) {
for (auto i = begin(); i != end(); ++i) *i = init;
}
/**
* @brief Construct a new segment tree object
*
* @tparam Tp
* @param __n Number of elements.
* @param init
*/
template <class Tp, typename std::enable_if<std::is_convertible<
Tp, Monoid>::value>::type * = nullptr>
segment_tree(size_type __n, Tp &&init) : segment_tree(__n) {
for (auto i = begin(); i != end(); ++i) *i = init;
}
/**
* @brief Construct a new segment tree object
*
* @tparam Iterator
* @param __first
* @param __last
*/
template <class Iterator,
typename std::enable_if<std::is_convertible<
typename std::iterator_traits<Iterator>::value_type,
Monoid>::value> * = nullptr>
segment_tree(Iterator __first, Iterator __last)
: segment_tree(std::distance(__first, __last)) {
for (auto i = begin(); __first != __last; ++i, ++__first) *i = *__first;
}
operator Container_tmpl<value_type>() const {
Container_tmpl<value_type> __c(size());
for (size_type __i = 0; __i != size(); ++__i)
__c[__i] = *data[__i | size_ext];
return __c;
}
/**
* @return Number of elements.
*/
size_type size() const { return size_orig; }
/**
* @param __i Index of the element
* @return Reference to the element.
*/
reference operator[](size_type __i) {
assert(__i < size_orig);
reference __ref = *data[__i |= size_ext];
if constexpr (__support_lazy) {
for (size_t __h{height}; __h; --__h) {
push(__i >> __h);
data[__i >> __h].reset();
}
} else {
while (data[__i >>= 1]) data[__i].reset();
}
return __ref;
}
/**
* @param first Left end, inclusive
* @param last Right end, exclusive
* @return Sum of elements in the interval.
*/
value_type fold(size_type first, size_type last) {
assert(last <= size_orig);
if (!(first < last)) return {};
first += size_ext, last += size_ext;
value_type left{}, right{};
for (size_t l = first, r = last--; l != r; l >>= 1, r >>= 1) {
if (l & 1) left = left + *pull(l++);
if (r & 1) right = *pull(--r) + right;
if constexpr (__support_lazy) {
if (data[first >>= 1].__z) left = left * *data[first].__z;
if (data[last >>= 1].__z) right = right * *data[last].__z;
}
}
if constexpr (__support_lazy) {
while (first >>= 1, last >>= 1) {
if (data[first].__z) left = left * *data[first].__z;
if (data[last].__z) right = right * *data[last].__z;
}
}
// if (first >= last) return Monoid{};
// first += size_ext, last += size_ext - 1;
// Monoid left{}, right{};
// for (size_t l = first, r = last + 1; last; l >>= 1, r >>= 1) {
// if (l < r) {
// if (l & 1) left = left + data[l++];
// if (r & 1) right = data[--r] + right;
// }
// if (first >>= 1, last >>= 1) {
// left = left * lazy[first];
// right = right * lazy[last];
// }
// }
// return left + right;
return left + right;
}
/**
* @return The whole sum.
*/
value_type fold() { return fold(0, size_orig); }
template <class _End = Endomorphism>
void update(size_type first, size_type last, _End const &endo) {
static_assert(__support_lazy);
assert(last <= size_orig);
if (!(first < last)) return;
first += size_ext, last += size_ext;
--last;
for (auto i = height; i; --i) push(first >> i), push(last >> i);
++last;
for (auto l = first, r = last; l < r; l >>= 1, r >>= 1) {
if (l & 1) apply(pull(l++), endo);
if (r & 1) apply(pull(--r), endo);
}
for (first >>= __builtin_ffs(first); data[first]; first >>= 1)
data[first].reset();
for (last >>= __builtin_ffs(last); data[last]; last >>= 1)
data[last].reset();
}
/**
* @brief Binary search for the partition point.
* @param right Right fixed end of the interval, exclusive
* @param pred Predicate in the form of either 'bool(Monoid)' or 'bool(Monoid,
* size_type)'
* @return Left end of the extremal interval satisfying the condition,
* inclusive.
*/
template <class Pred> size_type left_partition(size_type right, Pred pred) {
assert(right <= size_orig);
right += size_ext;
if constexpr (__support_lazy)
for (size_t i{height}; i; --i) push(right >> i);
Monoid mono{};
for (size_type left{size_ext}, step{}; left != right;
left >>= 1, right >>= 1, ++step) {
if ((left & 1) != (right & 1)) {
Monoid tmp = *pull(--right) + mono;
if (!pass_args(pred, tmp, (right << step) ^ size_ext))
return left_partition_subtree(right, mono, step, pred);
mono = tmp;
}
}
return 0;
}
/**
* @brief Binary search for the partition point.
* @param left Left fixed end of the interval, inclusive
* @param pred Predicate in the form of either 'bool(Monoid)' or 'bool(Monoid,
* size_type)'
* @return Right end of the extremal interval satisfying the condition,
* exclusive.
*/
template <class Pred> size_type right_partition(size_type left, Pred pred) {
assert(left <= size_orig);
left += size_ext;
if constexpr (__support_lazy)
for (size_t i{height}; i; --i) push(left >> i);
Monoid mono{};
for (size_type right{size_ext << 1}, step{}; left != right;
left >>= 1, right >>= 1, ++step) {
if ((left & 1) != (right & 1)) {
Monoid tmp = mono + *pull(left);
if (!pass_args(pred, tmp, ((left + 1) << step) ^ size_ext))
return right_partition_subtree(left, mono, step, pred);
mono = tmp;
++left;
}
}
return size_orig;
}
};
} // namespace workspace
#line 28 "atcoder-workspace/a.cc"
namespace workspace {
void main() {
// start here!
int n;
cin >> n;
vector<int> a(n);
cin >> a;
for (auto &&x : a) {
--x;
}
if (a[n - 2] < a[n - 1])
a.push_back(-1);
else
a.push_back(n);
if (a[0] < a[1])
a.insert(a.begin(), n);
else
a.insert(a.begin(), -1);
segment_tree<int> s(n);
i64 ans = 0;
fixed_point([&](auto self, int l, int r) -> void {
const int mid = (l + r) / 2;
if (l >= mid) return;
vector<pair<int, int>> lv, lm, rv, rm;
for (auto i : range(l, mid)) {
if (a[i] > a[i + 1])
lm.emplace_back(a[i], max(a[i - 1], a[i + 1]));
else
lv.emplace_back(a[i], min(a[i - 1], a[i + 1]));
}
for (auto i : range(mid, r)) {
if (a[i] > a[i - 1])
rm.emplace_back(a[i], max(a[i - 1], a[i + 1]));
else
rv.emplace_back(a[i], min(a[i - 1], a[i + 1]));
}
// v m
for (auto _ : range(2)) {
lm.swap(rm);
rv.swap(lv);
sort(begin(lv), end(lv));
sort(begin(rm), end(rm),
[](auto p1, auto p2) { return p1.second < p2.second; });
auto iter = rm.begin();
for (auto &&[x, y] : lv) {
while (iter != rm.end() && iter->second < x) {
++s[iter->first];
++iter;
}
ans += s.fold(0, y);
}
while (iter != rm.begin()) --s[(--iter)->first];
}
for (auto &&[x, y] : lm) {
x = n - 1 - x;
y = n - 1 - y;
}
for (auto &&[x, y] : rm) {
x = n - 1 - x;
y = n - 1 - y;
}
// v v
for (auto _ : range(2)) {
lm.swap(lv);
rm.swap(rv);
sort(rbegin(rv), rend(rv));
sort(rbegin(lv), rend(lv),
[](auto p1, auto p2) { return p1.second < p2.second; });
auto iter = lv.begin();
for (auto &&[x, y] : rv) {
while (iter != lv.end() && iter->second > x) {
s[iter->first]++;
++iter;
}
ans += s.fold(0, y);
}
while (iter != lv.begin()) --s[(--iter)->first];
}
self(l, mid);
self(mid, r);
})(1, n + 1);
cout << ans << "\n";
} // namespace workspace
} // namespace workspace
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0