結果
問題 | No.1366 交換門松列・梅 |
ユーザー |
![]() |
提出日時 | 2021-01-29 22:34:54 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 5 ms / 1,000 ms |
コード長 | 6,697 bytes |
コンパイル時間 | 1,862 ms |
コンパイル使用メモリ | 198,820 KB |
最終ジャッジ日時 | 2025-01-18 09:32:55 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 12 |
ソースコード
#include <bits/stdc++.h>#define FOR(i, n, m) for(ll i = (n); i < (ll)(m); i++)#define REP(i, n) FOR(i, 0, n)#define ALL(v) v.begin(), v.end()#define pb push_backusing namespace std;using ll = long long;using ld = long double;using P = pair<ll, ll>;constexpr ll inf = 1000000000;constexpr ll mod = 1000000007;constexpr long double eps = 1e-6;template<typename T1, typename T2>ostream& operator<<(ostream& os, pair<T1, T2> p) {os << to_string(p.first) << " " << to_string(p.second);return os;}template<typename T>ostream& operator<<(ostream& os, vector<T>& v) {REP(i, v.size()) {if(i) os << " ";os << v[i];}return os;}struct modint {ll n;public:modint(const ll n = 0) : n((n % mod + mod) % mod) {}static modint pow(modint a, int m) {modint r = 1;while(m > 0) {if(m & 1) { r *= a; }a = (a * a); m /= 2;}return r;}modint &operator++() { *this += 1; return *this; }modint &operator--() { *this -= 1; return *this; }modint operator++(int) { modint ret = *this; *this += 1; return ret; }modint operator--(int) { modint ret = *this; *this -= 1; return ret; }modint operator~() const { return (this -> pow(n, mod - 2)); } // inversefriend bool operator==(const modint& lhs, const modint& rhs) {return lhs.n == rhs.n;}friend bool operator<(const modint& lhs, const modint& rhs) {return lhs.n < rhs.n;}friend bool operator>(const modint& lhs, const modint& rhs) {return lhs.n > rhs.n;}friend modint &operator+=(modint& lhs, const modint& rhs) {lhs.n += rhs.n;if (lhs.n >= mod) lhs.n -= mod;return lhs;}friend modint &operator-=(modint& lhs, const modint& rhs) {lhs.n -= rhs.n;if (lhs.n < 0) lhs.n += mod;return lhs;}friend modint &operator*=(modint& lhs, const modint& rhs) {lhs.n = (lhs.n * rhs.n) % mod;return lhs;}friend modint &operator/=(modint& lhs, const modint& rhs) {lhs.n = (lhs.n * (~rhs).n) % mod;return lhs;}friend modint operator+(const modint& lhs, const modint& rhs) {return modint(lhs.n + rhs.n);}friend modint operator-(const modint& lhs, const modint& rhs) {return modint(lhs.n - rhs.n);}friend modint operator*(const modint& lhs, const modint& rhs) {return modint(lhs.n * rhs.n);}friend modint operator/(const modint& lhs, const modint& rhs) {return modint(lhs.n * (~rhs).n);}};istream& operator>>(istream& is, modint m) { is >> m.n; return is; }ostream& operator<<(ostream& os, modint m) { os << m.n; return os; }#define MAX_N 1010101long long extgcd(long long a, long long b, long long& x, long long& y) {long long d = a;if (b != 0) {d = extgcd(b, a % b, y, x);y -= (a / b) * x;} else {x = 1; y = 0;}return d;}long long mod_inverse(long long a, long long m) {long long x, y;if(extgcd(a, m, x, y) == 1) return (m + x % m) % m;else return -1;}vector<long long> fact(MAX_N+1, inf);long long mod_fact(long long n, long long& e) {if(fact[0] == inf) {fact[0]=1;if(MAX_N != 0) fact[1]=1;for(ll i = 2; i <= MAX_N; ++i) {fact[i] = (fact[i-1] * i) % mod;}}e = 0;if(n == 0) return 1;long long res = mod_fact(n / mod, e);e += n / mod;if((n / mod) % 2 != 0) return (res * (mod - fact[n % mod])) % mod;return (res * fact[n % mod]) % mod;}// return nCklong long mod_comb(long long n, long long k) {if(n < 0 || k < 0 || n < k) return 0;long long e1, e2, e3;long long a1 = mod_fact(n, e1), a2 = mod_fact(k, e2), a3 = mod_fact(n - k, e3);if(e1 > e2 + e3) return 0;return (a1 * mod_inverse((a2 * a3) % mod, mod)) % mod;}using mi = modint;mi mod_pow(mi a, ll n) {mi ret = 1;mi tmp = a;while(n > 0) {if(n % 2) ret *= tmp;tmp = tmp * tmp;n /= 2;}return ret;}ll mod_pow(ll a, ll n, ll m) {ll ret = 1;ll tmp = a;while(n > 0) {if(n % 2) ret *= tmp;ret %= m;tmp = tmp * tmp;tmp %= m;n /= 2;}return ret % m;}ll gcd(ll a, ll b) {if (b == 0) return a;return gcd(b, a % b);}int N, Q;const int INF = INT_MAX;struct LazySegmentTree {private:int n;vector<int> node, lazy;vector<bool> lazyFlag;public:LazySegmentTree(vector<int> v) {int sz = (int)v.size();n = 1; while(n < sz) n *= 2;node.resize(2*n-1);lazy.resize(2*n-1, 0);lazyFlag.resize(2*n-1, false);for(int i=0; i<sz; i++) node[i+n-1] = v[i];for(int i=n-2; i>=0; i--) node[i] = node[i*2+1] + node[i*2+2];}void lazyEvaluate(int k, int l, int r) {if(lazyFlag[k]) {node[k] = lazy[k] * (r - l);if(r - l > 1) {lazy[k*2+1] = lazy[k*2+2] = lazy[k];lazyFlag[k*2+1] = lazyFlag[k*2+2] = true;}lazyFlag[k] = false;}}void update(int a, int b, int x, int k=0, int l=0, int r=-1) {if(r < 0) r = n;lazyEvaluate(k, l, r);if(b <= l || r <= a) return;if(a <= l && r <= b) {lazy[k] = x;lazyFlag[k] = true;lazyEvaluate(k, l, r);}else {update(a, b, x, 2*k+1, l, (l+r)/2);update(a, b, x, 2*k+2, (l+r)/2, r);node[k] = node[2*k+1] + node[2*k+2];}}int find(int a, int b, int k=0, int l=0, int r=-1) {if(r < 0) r = n;lazyEvaluate(k, l, r);if(b <= l || r <= a) return 0;if(a <= l && r <= b) return node[k];int vl = find(a, b, 2*k+1, l, (l+r)/2);int vr = find(a, b, 2*k+2, (l+r)/2, r);return vl + vr;}};bool is_kadomatsu(int a, int b, int c) {if(a == b || b == c || a == c) {return false;}if(b < a && b < c) {return true;} else if(b > a && b > c) {return true;} else {return false;}}int main() {cin.tie(0);ios::sync_with_stdio(false);vector<int> a(3), b(3);REP(i, 3) cin >> a[i];REP(i, 3) cin >> b[i];REP(i, 3) REP(j, 3) {swap(a[i], b[j]);if(is_kadomatsu(a[0], a[1], a[2]) && is_kadomatsu(b[0], b[1], b[2])) {cout << "Yes" << endl;return 0;}swap(a[i], b[j]);}cout << "No" << endl;return 0;}