結果

問題 No.1366 交換門松列・梅
ユーザー gazellegazelle
提出日時 2021-01-29 22:34:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 6 ms / 1,000 ms
コード長 6,697 bytes
コンパイル時間 2,319 ms
コンパイル使用メモリ 208,152 KB
実行使用メモリ 11,160 KB
最終ジャッジ日時 2024-10-09 04:02:22
合計ジャッジ時間 3,245 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
11,068 KB
testcase_01 AC 5 ms
11,100 KB
testcase_02 AC 5 ms
11,068 KB
testcase_03 AC 5 ms
11,084 KB
testcase_04 AC 5 ms
11,096 KB
testcase_05 AC 5 ms
11,160 KB
testcase_06 AC 5 ms
11,088 KB
testcase_07 AC 5 ms
11,064 KB
testcase_08 AC 6 ms
11,136 KB
testcase_09 AC 5 ms
11,008 KB
testcase_10 AC 5 ms
11,136 KB
testcase_11 AC 5 ms
11,128 KB
testcase_12 AC 5 ms
11,060 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define FOR(i, n, m) for(ll i = (n); i < (ll)(m); i++)
#define REP(i, n) FOR(i, 0, n)
#define ALL(v) v.begin(), v.end()
#define pb push_back
using namespace std;
using ll = long long;
using ld = long double;
using P = pair<ll, ll>;
constexpr ll inf = 1000000000;
constexpr ll mod = 1000000007;
constexpr long double eps = 1e-6;
 
template<typename T1, typename T2>
ostream& operator<<(ostream& os, pair<T1, T2> p) {
    os << to_string(p.first) << " " << to_string(p.second);
    return os;
}
template<typename T>
ostream& operator<<(ostream& os, vector<T>& v) {
    REP(i, v.size()) {
        if(i) os << " ";
        os << v[i];
    }
    return os;
}
 
struct modint {
    ll n;
public:
    modint(const ll n = 0) : n((n % mod + mod) % mod) {}
    static modint pow(modint a, int m) {
        modint r = 1;
        while(m > 0) {
            if(m & 1) { r *= a; }
            a = (a * a); m /= 2;
        }
        return r;
    }
    modint &operator++() { *this += 1; return *this; }
    modint &operator--() { *this -= 1; return *this; }
    modint operator++(int) { modint ret = *this; *this += 1; return ret; }
    modint operator--(int) { modint ret = *this; *this -= 1; return ret; }
    modint operator~() const { return (this -> pow(n, mod - 2)); } // inverse
    friend bool operator==(const modint& lhs, const modint& rhs) {
        return lhs.n == rhs.n;
    }
    friend bool operator<(const modint& lhs, const modint& rhs) {
        return lhs.n < rhs.n;
    }
    friend bool operator>(const modint& lhs, const modint& rhs) {
        return lhs.n > rhs.n;
    }
    friend modint &operator+=(modint& lhs, const modint& rhs) {
        lhs.n += rhs.n;
        if (lhs.n >= mod) lhs.n -= mod;
        return lhs;
    }
    friend modint &operator-=(modint& lhs, const modint& rhs) {
        lhs.n -= rhs.n;
        if (lhs.n < 0) lhs.n += mod;
        return lhs;
    }
    friend modint &operator*=(modint& lhs, const modint& rhs) {
        lhs.n = (lhs.n * rhs.n) % mod;
        return lhs;
    }
    friend modint &operator/=(modint& lhs, const modint& rhs) {
        lhs.n = (lhs.n * (~rhs).n) % mod;
        return lhs;
    }
    friend modint operator+(const modint& lhs, const modint& rhs) {
        return modint(lhs.n + rhs.n);
    }
    friend modint operator-(const modint& lhs, const modint& rhs) {
        return modint(lhs.n - rhs.n);
    }
    friend modint operator*(const modint& lhs, const modint& rhs) {
        return modint(lhs.n * rhs.n);
    }
    friend modint operator/(const modint& lhs, const modint& rhs) {
        return modint(lhs.n * (~rhs).n);
    }
};
istream& operator>>(istream& is, modint m) { is >> m.n; return is; }
ostream& operator<<(ostream& os, modint m) { os << m.n; return os; }
 
#define MAX_N 1010101
long long extgcd(long long a, long long b, long long& x, long long& y) {
    long long d = a;
    if (b != 0) {
        d = extgcd(b, a % b, y, x);
        y -= (a / b) * x;
    } else {
        x = 1; y = 0;
    }
    return d;
}
long long mod_inverse(long long a, long long m) {
    long long x, y;
    if(extgcd(a, m, x, y) == 1) return (m + x % m) % m;
    else return -1;
}
vector<long long> fact(MAX_N+1, inf);
long long mod_fact(long long n, long long& e) {
    if(fact[0] == inf) {
        fact[0]=1;
        if(MAX_N != 0) fact[1]=1;
        for(ll i = 2; i <= MAX_N; ++i) {
            fact[i] = (fact[i-1] * i) % mod;
        }
    }
    e = 0;
    if(n == 0) return 1;
    long long res = mod_fact(n / mod, e);
    e += n / mod;
    if((n / mod) % 2 != 0) return (res * (mod - fact[n % mod])) % mod;
    return (res * fact[n % mod]) % mod;
}
// return nCk
long long mod_comb(long long n, long long k) {
    if(n < 0 || k < 0 || n < k) return 0;
    long long e1, e2, e3;
    long long a1 = mod_fact(n, e1), a2 = mod_fact(k, e2), a3 = mod_fact(n - k, e3);
    if(e1 > e2 + e3) return 0;
    return (a1 * mod_inverse((a2 * a3) % mod, mod)) % mod;
}
 
using mi = modint;
 
mi mod_pow(mi a, ll n) {
    mi ret = 1;
    mi tmp = a;
    while(n > 0) {
        if(n % 2) ret *= tmp;
        tmp = tmp * tmp;
        n /= 2;
    }
    return ret;
}

ll mod_pow(ll a, ll n, ll m) {
    ll ret = 1;
    ll tmp = a;
    while(n > 0) {
        if(n % 2) ret *= tmp;
        ret %= m;
        tmp = tmp * tmp;
        tmp %= m;
        n /= 2;
    }
    return ret % m;
}
 
ll gcd(ll a, ll b) {
    if (b == 0) return a;
    return gcd(b, a % b);
}

int N, Q;
const int INF = INT_MAX;
struct LazySegmentTree {
private:
    int n;
    vector<int> node, lazy;
    vector<bool> lazyFlag;

public:
    LazySegmentTree(vector<int> v) {
        int sz = (int)v.size();
        n = 1; while(n < sz) n *= 2;
        node.resize(2*n-1);
        lazy.resize(2*n-1, 0);
        lazyFlag.resize(2*n-1, false);

        for(int i=0; i<sz; i++) node[i+n-1] = v[i];
        for(int i=n-2; i>=0; i--) node[i] = node[i*2+1] + node[i*2+2];
    }

    void lazyEvaluate(int k, int l, int r) {
        if(lazyFlag[k]) {
            node[k] = lazy[k] * (r - l);
            if(r - l > 1) {
                lazy[k*2+1] = lazy[k*2+2] = lazy[k];
                lazyFlag[k*2+1] = lazyFlag[k*2+2] = true;
            }
            lazyFlag[k] = false;
        }
    }

    void update(int a, int b, int x, int k=0, int l=0, int r=-1) {
        if(r < 0) r = n;
        lazyEvaluate(k, l, r);
        if(b <= l || r <= a) return;
        if(a <= l && r <= b) {
            lazy[k] = x;
            lazyFlag[k] = true;
            lazyEvaluate(k, l, r);
        }
        else {
            update(a, b, x, 2*k+1, l, (l+r)/2);
            update(a, b, x, 2*k+2, (l+r)/2, r);
            node[k] = node[2*k+1] + node[2*k+2];
        }
    }

    int find(int a, int b, int k=0, int l=0, int r=-1) {
        if(r < 0) r = n;
        lazyEvaluate(k, l, r);
        if(b <= l || r <= a) return 0;
        if(a <= l && r <= b) return node[k];
        int vl = find(a, b, 2*k+1, l, (l+r)/2);
        int vr = find(a, b, 2*k+2, (l+r)/2, r);
        return vl + vr;
    }
};

bool is_kadomatsu(int a, int b, int c) {
    if(a == b || b == c || a == c) {
        return false;
    }
    if(b < a && b < c) {
        return true;
    } else if(b > a && b > c) {
        return true;
    } else {
        return false;
    }
}

int main() {
    cin.tie(0);
    ios::sync_with_stdio(false);

    vector<int> a(3), b(3);

    REP(i, 3) cin >> a[i];
    REP(i, 3) cin >> b[i];

    REP(i, 3) REP(j, 3) {
        swap(a[i], b[j]);
        if(is_kadomatsu(a[0], a[1], a[2]) && is_kadomatsu(b[0], b[1], b[2])) {
            cout << "Yes" << endl;
            return 0;
        }
        swap(a[i], b[j]);
    }

    cout << "No" << endl;

    return 0;
}
0