結果

問題 No.822 Bitwise AND
ユーザー yuruhiyayuruhiya
提出日時 2021-01-31 10:17:29
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 29 ms / 2,000 ms
コード長 24,702 bytes
コンパイル時間 2,216 ms
コンパイル使用メモリ 204,916 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-28 19:37:57
合計ジャッジ時間 2,982 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 20 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 29 ms
5,376 KB
testcase_05 AC 13 ms
5,376 KB
testcase_06 AC 20 ms
5,376 KB
testcase_07 AC 29 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 17 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "/home/yuruhiya/programming/library/template/template.cpp"
#include <bits/stdc++.h>
#line 6 "/home/yuruhiya/programming/library/template/constants.cpp"

#define rep(i, n) for (int i = 0; i < (n); ++i)
#define FOR(i, m, n) for (int i = (m); i < (n); ++i)
#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)
#define rfor(i, m, n) for (int i = (m); i >= (n); --i)
#define unless(c) if (!(c))
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)

using namespace std;
using ll = long long;
using LD = long double;
using VB = vector<bool>;
using VVB = vector<VB>;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<ll>;
using VVL = vector<VL>;
using VS = vector<string>;
using VD = vector<LD>;
using PII = pair<int, int>;
using VP = vector<PII>;
using PLL = pair<ll, ll>;
using VPL = vector<PLL>;
template <class T> using PQ = priority_queue<T>;
template <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;
constexpr int inf = 1000000000;
constexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;
constexpr long double PI = 3.14159265358979323846, EPS = 1e-12;
#line 7 "/home/yuruhiya/programming/library/template/Input.cpp"
using namespace std;

#ifdef _WIN32
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#define fwrite_unlocked fwrite
#define fflush_unlocked fflush
#endif
class Scanner {
	static int gc() {
		return getchar_unlocked();
	}
	static char next_char() {
		char c;
		read(c);
		return c;
	}
	template <class T> static void read(T& v) {
		cin >> v;
	}
	static void read(char& v) {
		while (isspace(v = gc()))
			;
	}
	static void read(bool& v) {
		v = next_char() != '0';
	}
	static void read(string& v) {
		v.clear();
		for (char c = next_char(); !isspace(c); c = gc()) v += c;
	}
	static void read(int& v) {
		v = 0;
		bool neg = false;
		char c = next_char();
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c); c = gc()) v = v * 10 + (c - '0');
		if (neg) v = -v;
	}
	static void read(long long& v) {
		v = 0;
		bool neg = false;
		char c = next_char();
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c); c = gc()) v = v * 10 + (c - '0');
		if (neg) v = -v;
	}
	static void read(double& v) {
		v = 0;
		double dp = 1;
		bool neg = false, after_dp = false;
		char c = next_char();
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c) || c == '.'; c = gc()) {
			if (c == '.') {
				after_dp = true;
			} else if (after_dp) {
				v += (c - '0') * (dp *= 0.1);
			} else {
				v = v * 10 + (c - '0');
			}
		}
		if (neg) v = -v;
	}
	static void read(long double& v) {
		v = 0;
		long double dp = 1;
		bool neg = false, after_dp = false;
		char c = next_char();
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c) || c == '.'; c = gc()) {
			if (c == '.') {
				after_dp = true;
			} else if (after_dp) {
				v += (c - '0') * (dp *= 0.1);
			} else {
				v = v * 10 + (c - '0');
			}
		}
		if (neg) v = -v;
	}
	template <class T, class U> static void read(pair<T, U>& v) {
		read(v.first);
		read(v.second);
	}
	template <class T> static void read(vector<T>& v) {
		for (auto& e : v) read(e);
	}
	template <size_t N = 0, class T> static void read_tuple_impl(T& v) {
		if constexpr (N < tuple_size_v<T>) {
			read(get<N>(v));
			read_tuple_impl<N + 1>(v);
		}
	}
	template <class... T> static void read(tuple<T...>& v) {
		read_tuple_impl(v);
	}
	struct ReadVectorHelper {
		size_t n;
		ReadVectorHelper(size_t _n) : n(_n) {}
		template <class T> operator vector<T>() {
			vector<T> v(n);
			read(v);
			return v;
		}
	};
	struct Read2DVectorHelper {
		size_t n, m;
		Read2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}
		template <class T> operator vector<vector<T>>() {
			vector<vector<T>> v(n, vector<T>(m));
			read(v);
			return v;
		}
	};

public:
	string read_line() const {
		string v;
		for (char c = gc(); c != '\n' && c != '\0'; c = gc()) v += c;
		return v;
	}
	template <class T> T read() const {
		T v;
		read(v);
		return v;
	}
	template <class T> vector<T> read_vector(size_t n) const {
		vector<T> a(n);
		read(a);
		return a;
	}
	template <class T> operator T() const {
		return read<T>();
	}
	int operator--(int) const {
		return read<int>() - 1;
	}
	ReadVectorHelper operator[](size_t n) const {
		return ReadVectorHelper(n);
	}
	Read2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {
		return Read2DVectorHelper(nm);
	}
	void operator()() const {}
	template <class H, class... T> void operator()(H&& h, T&&... t) const {
		read(h);
		operator()(forward<T>(t)...);
	}

private:
	template <template <class...> class, class...> struct Multiple;
	template <template <class...> class V, class Head, class... Tail>
	struct Multiple<V, Head, Tail...> {
		template <class... Args> using vec = V<vector<Head>, Args...>;
		using type = typename Multiple<vec, Tail...>::type;
	};
	template <template <class...> class V> struct Multiple<V> { using type = V<>; };
	template <class... T> using multiple_t = typename Multiple<tuple, T...>::type;
	template <size_t N = 0, class T> void multiple_impl(T& t) const {
		if constexpr (N < tuple_size_v<T>) {
			auto& vec = get<N>(t);
			using V = typename remove_reference_t<decltype(vec)>::value_type;
			vec.push_back(read<V>());
			multiple_impl<N + 1>(t);
		}
	}

public:
	template <class... T> auto multiple(size_t h) const {
		multiple_t<T...> result;
		while (h--) multiple_impl(result);
		return result;
	}
} in;
#define inputs(T, ...) \
	T __VA_ARGS__;     \
	in(__VA_ARGS__)
#define ini(...) inputs(int, __VA_ARGS__)
#define inl(...) inputs(long long, __VA_ARGS__)
#define ins(...) inputs(string, __VA_ARGS__)
#line 7 "/home/yuruhiya/programming/library/template/Output.cpp"
#include <charconv>
#line 10 "/home/yuruhiya/programming/library/template/Output.cpp"
using namespace std;

struct BoolStr {
	const char *t, *f;
	BoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}
} Yes("Yes", "No"), yes("yes", "no"), YES("YES", "NO"), Int("1", "0");
struct DivStr {
	const char *d, *l;
	DivStr(const char* _d, const char* _l) : d(_d), l(_l) {}
} spc(" ", "\n"), no_spc("", "\n"), end_line("\n", "\n"), comma(",", "\n"), no_endl(" ", "");
class Printer {
	BoolStr B{Yes};
	DivStr D{spc};

public:
	void print(int v) const {
		char buf[12]{};
		if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {
			fwrite(buf, sizeof(char), ptr - buf, stdout);
		} else {
			assert(false);
		}
	}
	void print(long long v) const {
		char buf[21]{};
		if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {
			fwrite(buf, sizeof(char), ptr - buf, stdout);
		} else {
			assert(false);
		}
	}
	void print(bool v) const {
		print(v ? B.t : B.f);
	}
	void print(vector<bool>::reference v) const {
		print(v ? B.t : B.f);
	}
	void print(char v) const {
		putchar_unlocked(v);
	}
	void print(const char* v) const {
		fwrite_unlocked(v, 1, strlen(v), stdout);
	}
	void print(double v) const {
		printf("%.20f", v);
	}
	void print(long double v) const {
		printf("%.20Lf", v);
	}
	template <class T> void print(const T& v) const {
		cout << v;
	}
	template <class T, class U> void print(const pair<T, U>& v) const {
		print(v.first);
		print(D.d);
		print(v.second);
	}
	template <class InputIterater>
	void print_range(const InputIterater& begin, const InputIterater& end) const {
		for (InputIterater i = begin; i != end; ++i) {
			if (i != begin) print(D.d);
			print(*i);
		}
	}
	template <class T> void print(const vector<T>& v) const {
		print_range(v.begin(), v.end());
	}
	template <class T, size_t N> void print(const array<T, N>& v) const {
		print_range(v.begin(), v.end());
	}
	template <class T> void print(const vector<vector<T>>& v) const {
		for (size_t i = 0; i < v.size(); ++i) {
			if (i) print(D.l);
			print(v[i]);
		}
	}

	Printer() = default;
	Printer(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}
	Printer& operator()() {
		print(D.l);
		return *this;
	}
	template <class Head> Printer& operator()(Head&& h) {
		print(h);
		print(D.l);
		return *this;
	}
	template <class Head, class... Tail> Printer& operator()(Head&& h, Tail&&... t) {
		print(h);
		print(D.d);
		return operator()(forward<Tail>(t)...);
	}
	template <class... Args> Printer& flag(bool f, Args&&... args) {
		if (f) {
			return operator()(forward<Args>(args)...);
		} else {
			return *this;
		}
	}
	template <class InputIterator>
	Printer& range(const InputIterator& begin, const InputIterator& end) {
		print_range(begin, end);
		print(D.l);
		return *this;
	}
	template <class T> Printer& range(const T& a) {
		range(a.begin(), a.end());
		return *this;
	}
	template <class... T> void exit(T&&... t) {
		operator()(forward<T>(t)...);
		std::exit(EXIT_SUCCESS);
	}
	Printer& flush() {
		fflush_unlocked(stdout);
		return *this;
	}
	Printer& set(const BoolStr& b) {
		B = b;
		return *this;
	}
	Printer& set(const DivStr& d) {
		D = d;
		return *this;
	}
	Printer& set(const char* t, const char* f) {
		B = BoolStr(t, f);
		return *this;
	}
} out;
#line 3 "/home/yuruhiya/programming/library/template/Step.cpp"
using namespace std;

template <class T> struct Step {
	using value_type = T;

	class iterator {
		value_type a, b, c;

	public:
		constexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}
		constexpr iterator(value_type _b, value_type _c, value_type _s)
		    : a(_b), b(_c), c(_s) {}
		constexpr iterator& operator++() {
			--b;
			a += c;
			return *this;
		}
		constexpr iterator operator++(int) {
			iterator tmp = *this;
			--b;
			a += c;
			return tmp;
		}
		constexpr const value_type& operator*() const {
			return a;
		}
		constexpr const value_type* operator->() const {
			return &a;
		}
		constexpr bool operator==(const iterator& i) const {
			return b == i.b;
		}
		constexpr bool operator!=(const iterator& i) const {
			return !(b == i.b);
		}
		constexpr value_type start() const {
			return a;
		}
		constexpr value_type size() const {
			return b;
		}
		constexpr value_type step() const {
			return c;
		}
	};
	constexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}
	constexpr iterator begin() const {
		return be;
	}
	constexpr iterator end() const {
		return en;
	}
	constexpr value_type start() const {
		return be.start();
	}
	constexpr value_type size() const {
		return be.size();
	}
	constexpr value_type step() const {
		return be.step();
	}
	constexpr value_type sum() const {
		return start() * size() + step() * (size() * (size() - 1) / 2);
	}
	operator vector<value_type>() const {
		return to_a();
	}
	auto to_a() const {
		vector<value_type> result;
		result.reserve(size());
		for (auto i : *this) {
			result.push_back(i);
		}
		return result;
	}

private:
	iterator be, en;
};
template <class T> constexpr auto step(T a) {
	return Step<T>(0, a, 1);
}
template <class T> constexpr auto step(T a, T b) {
	return Step<T>(a, b - a, 1);
}
template <class T> constexpr auto step(T a, T b, T c) {
	return Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);
}
#line 8 "/home/yuruhiya/programming/library/template/Ruby.cpp"
using namespace std;

template <class F> struct Callable {
	F func;
	Callable(const F& f) : func(f) {}
};
template <class T, class F> auto operator|(const T& v, const Callable<F>& c) {
	return c.func(v);
}

struct Sort_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(begin(v), end(v), f);
			return v;
		});
	}
	template <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {
		sort(begin(v), end(v));
		return v;
	}
} Sort;
struct SortBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(begin(v), end(v), [&](const auto& i, const auto& j) { return f(i) < f(j); });
			return v;
		});
	}
} SortBy;
struct RSort_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(rbegin(v), rend(v), f);
			return v;
		});
	}
	template <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {
		sort(rbegin(v), rend(v));
		return v;
	}
} RSort;
struct RSortBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(begin(v), end(v), [&](const auto& i, const auto& j) { return f(i) > f(j); });
			return v;
		});
	}
} RSortBy;
struct Reverse_impl {
	template <class T> friend auto operator|(T v, const Reverse_impl& c) {
		reverse(begin(v), end(v));
		return v;
	}
} Reverse;
struct Unique_impl {
	template <class T> friend auto operator|(T v, const Unique_impl& c) {
		v.erase(unique(begin(v), end(v), end(v)));
		return v;
	}
} Unique;
struct Uniq_impl {
	template <class T> friend auto operator|(T v, const Uniq_impl& c) {
		sort(begin(v), end(v));
		v.erase(unique(begin(v), end(v)), end(v));
		return v;
	}
} Uniq;
struct Rotate_impl {
	auto operator()(int&& left) {
		return Callable([&](auto v) {
			int s = static_cast<int>(size(v));
			assert(-s <= left && left <= s);
			if (0 <= left) {
				rotate(begin(v), begin(v) + left, end(v));
			} else {
				rotate(begin(v), end(v) + left, end(v));
			}
			return v;
		});
	}
} Rotate;
struct Max_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) { return *max_element(begin(v), end(v), f); });
	}
	template <class T> friend auto operator|(T v, const Max_impl& c) {
		return *max_element(begin(v), end(v));
	}
} Max;
struct Min_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) { return *min_element(begin(v), end(v), f); });
	}
	template <class T> friend auto operator|(T v, const Min_impl& c) {
		return *min_element(begin(v), end(v));
	}
} Min;
struct MaxPos_impl {
	template <class T> friend auto operator|(T v, const MaxPos_impl& c) {
		return max_element(begin(v), end(v)) - begin(v);
	}
} MaxPos;
struct MinPos_impl {
	template <class T> friend auto operator|(T v, const MinPos_impl& c) {
		return min_element(begin(v), end(v)) - begin(v);
	}
} MinPos;
struct MaxBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto max_it = begin(v);
			auto max_val = f(*max_it);
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); max_val < val) {
					max_it = it;
					max_val = val;
				}
			}
			return *max_it;
		});
	}
} MaxBy;
struct MinBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto min_it = begin(v);
			auto min_val = f(*min_it);
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); min_val > val) {
					min_it = it;
					min_val = val;
				}
			}
			return *min_it;
		});
	}
} MinBy;
struct MaxOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto max_val = f(*begin(v));
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); max_val < val) {
					max_val = val;
				}
			}
			return max_val;
		});
	}
} MaxOf;
struct MinOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto min_val = f(*begin(v));
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); min_val > val) {
					min_val = val;
				}
			}
			return min_val;
		});
	}
} MinOf;
struct Count_impl {
	template <class V> auto operator()(const V& val) {
		return Callable([&](auto v) { return count(begin(v), end(v), val); });
	}
} Count;
struct CountIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) { return count_if(begin(v), end(v), f); });
	}
} CountIf;
struct Index_impl {
	template <class V> auto operator()(const V& val) {
		return Callable([&](auto v) -> optional<int> {
			auto result = find(begin(v), end(v), val);
			return result != end(v) ? optional(result - begin(v)) : nullopt;
		});
	}
	template <class V> auto operator()(const V& val, size_t i) {
		return Callable([&](auto v) -> optional<int> {
			auto result = find(next(begin(v), i), end(v), val);
			return result != end(v) ? optional(result - begin(v)) : nullopt;
		});
	}
} Index;
struct IndexIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) -> optional<int> {
			auto result = find_if(begin(v), end(v), f);
			return result != end(v) ? optional(result - begin(v)) : nullopt;
		});
	}
} IndexIf;
struct FindIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) -> optional<typename decltype(v)::value_type> {
			auto result = find_if(begin(v), end(v), f);
			return result != end(v) ? optional(*result) : nullopt;
		});
	}
} FindIf;
struct Sum_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			return accumulate(next(begin(v)), end(v), f(*begin(v)),
			                  [&](const auto& a, const auto& b) { return a + f(b); });
		});
	}
	template <class T> friend auto operator|(T v, [[maybe_unused]] const Sum_impl& c) {
		return accumulate(begin(v), end(v), typename T::value_type{});
	}
} Sum;
struct Includes {
	template <class V> auto operator()(const V& val) {
		return Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });
	}
} Includes;
struct IncludesIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });
	}
} IncludesIf;
struct RemoveIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) {
			v.erase(remove_if(begin(v), end(v), f), end(v));
			return v;
		});
	}
} RemoveIf;
struct Each_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				f(i);
			}
		});
	}
} Each;
struct EachConsPair_impl {
	template <class T, class value_type = typename T::value_type>
	friend auto operator|(const T& v, EachConsPair_impl& c) {
		vector<pair<value_type, value_type>> result;
		if (size(v) >= 2) {
			result.reserve(size(v) - 1);
			for (size_t i = 0; i < size(v) - 1; ++i) {
				result.emplace_back(v[i], v[i + 1]);
			}
		}
		return result;
	}
} EachConsPair;
struct Select_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			using value_type = typename decltype(v)::value_type;
			vector<value_type> result;
			for (const auto& i : v) {
				if (f(i)) result.push_back(i);
			}
			return result;
		});
	}
} Select;
struct Map_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			using result_type = invoke_result_t<F, typename decltype(v)::value_type>;
			vector<result_type> result;
			result.reserve(size(v));
			for (const auto& i : v) {
				result.push_back(f(i));
			}
			return result;
		});
	}
} Map;
struct Indexed_impl {
	template <class T> friend auto operator|(const T& v, Indexed_impl& c) {
		using value_type = typename T::value_type;
		vector<pair<value_type, int>> result;
		result.reserve(size(v));
		int index = 0;
		for (const auto& i : v) {
			result.emplace_back(i, index++);
		}
		return result;
	}
} Indexed;
struct AllOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				if (!f(i)) return false;
			}
			return true;
		});
	}
} AllOf;
struct AnyOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				if (f(i)) return true;
			}
			return false;
		});
	}
} AnyOf;
struct NoneOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				if (f(i)) return false;
			}
			return true;
		});
	}
} NoneOf;

struct Tally_impl {
	template <class F> auto operator()(size_t max_val) {
		return Callable([&](auto v) {
			vector<size_t> result(max_val);
			for (const auto& i : v) {
				result[static_cast<size_t>(i)]++;
			}
			return result;
		});
	}
	template <class T, class value_type = typename T::value_type>
	friend auto operator|(const T& v, Tally_impl& c) {
		map<value_type, size_t> result;
		for (const auto& i : v) {
			result[i]++;
		}
		return result;
	}
} Tally;

template <class T> auto operator*(const vector<T>& a, size_t n) {
	T result;
	for (size_t i = 0; i < n; ++i) {
		result.insert(result.end(), a.begin(), a.end());
	}
	return result;
}
auto operator*(string a, size_t n) {
	string result;
	for (size_t i = 0; i < n; ++i) {
		result += a;
	}
	return result;
}
template <class T, class U> auto& operator<<(vector<T>& a, const U& b) {
	a.insert(a.end(), all(b));
	return a;
}
template <class T> auto& operator<<(string& a, const T& b) {
	a.insert(a.end(), all(b));
	return a;
}
template <class T, class U> auto operator+(vector<T> a, const U& b) {
	a << b;
	return a;
}
template <class T> auto operator+(string a, const T& b) {
	a << b;
	return a;
}
#line 7 "/home/yuruhiya/programming/library/template/functions.cpp"
using namespace std;

template <class T = long long> constexpr T TEN(size_t n) {
	T result = 1;
	for (size_t i = 0; i < n; ++i) result *= 10;
	return result;
}
template <class T, class U,
          enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>
constexpr auto div_ceil(T n, U m) {
	return (n + m - 1) / m;
}
template <class T, class U> constexpr auto div_ceil2(T n, U m) {
	return div_ceil(n, m) * m;
}
template <class T> constexpr T triangle(T n) {
	return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);
}
template <class T> constexpr T nC2(T n) {
	return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);
}
template <class T, class U> constexpr auto middle(const T& l, const U& r) {
	return l + (r - l) / 2;
}
template <class T, class U, class V>
constexpr bool in_range(const T& v, const U& lower, const V& upper) {
	return lower <= v && v < upper;
}
template <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>
constexpr bool is_square(T n) {
	T s = sqrt(n);
	return s * s == n || (s + 1) * (s + 1) == n;
}
template <class T = long long> constexpr T BIT(int b) {
	return T(1) << b;
}
template <class T> constexpr int BIT(T x, int i) {
	return (x & (T(1) << i)) ? 1 : 0;
}
template <class T> constexpr int Sgn(T x) {
	return (0 < x) - (0 > x);
}
template <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>
constexpr T Pow(T a, U n) {
	assert(n >= 0);
	T result = 1;
	while (n > 0) {
		if (n & 1) {
			result *= a;
			n--;
		} else {
			a *= a;
			n >>= 1;
		}
	}
	return result;
}
template <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>
constexpr T Powmod(T a, U n, T mod) {
	assert(n >= 0);
	if (a > mod) a %= mod;
	T result = 1;
	while (n > 0) {
		if (n & 1) {
			result = result * a % mod;
			n--;
		} else {
			a = a * a % mod;
			n >>= 1;
		}
	}
	return result;
}
template <class T> bool chmax(T& a, const T& b) {
	if (a < b) {
		a = b;
		return true;
	}
	return false;
}
template <class T> bool chmin(T& a, const T& b) {
	if (a > b) {
		a = b;
		return true;
	}
	return false;
}
template <class T> int sz(const T& v) {
	return v.size();
}
template <class T, class U> int lower_index(const T& a, const U& v) {
	return lower_bound(all(a), v) - a.begin();
}
template <class T, class U> int upper_index(const T& a, const U& v) {
	return upper_bound(all(a), v) - a.begin();
}
template <class T> auto Slice(const T& v, size_t i, size_t len) {
	return i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();
}
template <class T, class U = typename T::value_type> U Gcdv(const T& v) {
	return accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);
}
template <class T, class U = typename T::value_type> U Lcmv(const T& v) {
	return accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);
}
namespace internal {
	template <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {
		if constexpr (N == 1) {
			return vector(sizes[0], init);
		} else {
			int size = sizes[N - 1];
			sizes.pop_back();
			return vector(size, make_vector<T, N - 1>(sizes, init));
		}
	}
}  // namespace internal
template <class T, size_t N> auto make_vector(const int (&sizes)[N], const T& init = T()) {
	vector s(rbegin(sizes), rend(sizes));
	return internal::make_vector<T, N>(s, init);
}
#line 9 "/home/yuruhiya/programming/library/template/template.cpp"
#if __has_include(<library/dump.hpp>)
#include <library/dump.hpp>
#define LOCAL
#else
#define dump(...) ((void)0)
#endif

template <class T> constexpr T oj_local(const T& oj, const T& local) {
#ifndef LOCAL
	return oj;
#else
	return local;
#endif
}
#line 2 "a.cpp"

int main() {
	ini(n, k);
	if (n < k) {
		out("INF");
	} else {
		int ans = 0;
		FOR(x, n, n * 2 + 1) {
			FOR(y, x, x + k + 1) {
				ans += (x & y) == n;
			}
		}
		out(ans);
	}
}
0