結果
問題 | No.1418 Sum of Sum of Subtree Size |
ユーザー |
![]() |
提出日時 | 2021-02-05 16:21:57 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 121 ms / 2,000 ms |
コード長 | 7,565 bytes |
コンパイル時間 | 1,193 ms |
コンパイル使用メモリ | 108,828 KB |
実行使用メモリ | 28,416 KB |
最終ジャッジ日時 | 2024-07-02 06:38:06 |
合計ジャッジ時間 | 5,700 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 41 |
コンパイルメッセージ
main.cpp: In function 'long long int keta(long long int)': main.cpp:42:1: warning: control reaches end of non-void function [-Wreturn-type] 42 | } | ^ main.cpp: In function 'long long int gcd(long long int, long long int)': main.cpp:56:1: warning: control reaches end of non-void function [-Wreturn-type] 56 | } | ^ main.cpp: In function 'long long int lcm(long long int, long long int)': main.cpp:69:1: warning: control reaches end of non-void function [-Wreturn-type] 69 | } | ^
ソースコード
#include<iostream>#include<algorithm>#include<cmath>#include<map>#include<stdio.h>#include<vector>#include<queue>#include<math.h>#include<deque>#include<set>#include<bitset>#include<ctime>#include<random>using namespace std;#define double long double#define int long long#define rep(s,i,n) for(int i=s;i<n;i++)#define c(n) cout<<n<<endl;#define ic(n) int n;cin>>n;#define sc(s) string s;cin>>s;#define dc(d) double d;cin>>d;#define mod 1000000007#define inf 1000000000000000007#define f first#define s second#define mini(c,a,b) *min_element(c+a,c+b)#define maxi(c,a,b) *max_element(c+a,c+b)#define pi 3.141592653589793238462643383279#define e_ 2.718281828459045235360287471352#define P pair<int,int>#define upp(a,n,x) upper_bound(a,a+n,x)-a;#define low(a,n,x) lower_bound(a,a+n,x)-a;#define pb push_back//printf("%.12Lf\n",);int keta(int x) {rep(0, i, 30) {if (x < 10) {return i + 1;}x = x / 10;}}int gcd(int x, int y) {if (x == 0 || y == 0)return x + y;int aa = x, bb = y;rep(0, i, 1000) {aa = aa % bb;if (aa == 0) {return bb;}bb = bb % aa;if (bb == 0) {return aa;}}}int lcm(int x, int y) {int aa = x, bb = y;rep(0, i, 1000) {aa = aa % bb;if (aa == 0) {return x / bb * y;}bb = bb % aa;if (bb == 0) {return x / aa * y;}}}int integer(double d){return long(d);}int distance(double a,double b,double c,double d){return sqrt((b-a)*(b-a)+(c-d)*(c-d));}bool p(int x) {if (x == 1)return false;rep(2, i, sqrt(x) + 1) {if (x % i == 0 && x != i) {return false;}}return true;}int max(int a, int b) {if (a >= b)return a;else return b;}string maxst(string s, string t) {int n = s.size();int m = t.size();if (n > m)return s;else if (n < m)return t;else {rep(0, i, n) {if (s[i] > t[i])return s;if (s[i] < t[i])return t;}return s;}}int min(int a, int b) {if (a >= b)return b;else return a;}string string_reverse(string s){int n=s.size();string t;rep(0,i,n)t+=s[n-i-1];return t;}int n2[41];int nis[41];int nia[41];int mody[41];int nn;int com(int n, int y) {int ni = 1;for (int i = 0;i < 41;i++) {n2[i] = ni;ni *= 2;}int bunsi = 1, bunbo = 1;rep(0, i, y)bunsi = (bunsi * (n - i)) % mod;rep(0, i, y)bunbo = (bunbo * (i + 1)) % mod;mody[0] = bunbo;rep(1, i, 41) {bunbo = (bunbo * bunbo) % mod;mody[i] = bunbo;}rep(0, i, 41)nis[i] = 0;nn = mod - 2;for (int i = 40;i >= 0;i -= 1) {if (nn > n2[i]) {nis[i]++;nn -= n2[i];}}nis[0]++;rep(0, i, 41) {if (nis[i] == 1) {bunsi = (bunsi * mody[i]) % mod;}}return bunsi;}int newcom(int n,int y){int bunsi = 1, bunbo = 1;rep(0, i, y){bunsi = (bunsi * (n - i)) ;bunbo = (bunbo * (i + 1)) ;int k=gcd(bunsi,bunbo);bunsi/=k;bunbo/=k;}return bunsi/bunbo;}int gyakugen(int n, int y) {int ni = 1;for (int i = 0;i < 41;i++) {n2[i] = ni;ni *= 2;}mody[0] = y;rep(1, i, 41) {y = (y * y) % mod;mody[i] = y;}rep(0, i, 41)nis[i] = 0;nn = mod - 2;for (int i = 40;i >= 0;i -= 1) {if (nn > n2[i]) {nis[i]++;nn -= n2[i];}}nis[0]++;rep(0, i, 41) {if (nis[i] == 1) {n = (n * mody[i]) % mod;}}return n;}int yakuwa(int n) {int sum = 0;rep(1, i, sqrt(n + 1)) {if (n % i == 0)sum += i + n / i;if (i * i == n)sum -= i;}return sum;}int poow(int y, int n) {if (n == 0)return 1;n -= 1;int ni = 1;for (int i = 0;i < 41;i++) {n2[i] = ni;ni *= 2;}int yy = y;mody[0] = yy;rep(1, i, 41) {yy = (yy * yy) % mod;mody[i] = yy;}rep(0, i, 41)nis[i] = 0;nn = n;for (int i = 40;i >= 0;i -= 1) {if (nn >= n2[i]) {nis[i]++;nn -= n2[i];}}rep(0, i, 41) {if (nis[i] == 1) {y = (y * mody[i]) % mod;}}return y;}int minpow(int x, int y) {int sum = 1;rep(0, i, y)sum *= x;return sum;}int ketawa(int x, int sinsuu) {int sum = 0;rep(0, i, 100)sum += (x % poow(sinsuu, i + 1)) / (poow(sinsuu, i));return sum;}int sankaku(int a) {if(a%2==0) return a /2*(a+1);else return (a+1)/2*a;}int sames(int a[1111111], int n) {int ans = 0;rep(0, i, n) {if (a[i] == a[i + 1]) {int j = i;while (a[j + 1] == a[i] && j <= n - 2)j++;ans += sankaku(j - i);i = j;}}return ans;}using Graph = vector<vector<int>>;int oya[214514];int depth[214514];int subtreesize[214514];void dfs(const Graph& G, int v, int p, int d) {depth[v] = d;oya[v] = p;for (auto nv : G[v]) {if (nv == p) continue; // nv が親 p だったらダメdfs(G, nv, v, d + 1); // d を 1 増やして子ノードへ}subtreesize[v]=1;for(auto c:G[v]){if(c==p)continue;subtreesize[v]+=subtreesize[c];}}/*int H=10,W=10;char field[10][10];char memo[10][10];void dfs(int h, int w) {memo[h][w] = 'x';// 八方向を探索for (int dh = -1; dh <= 1; ++dh) {for (int dw = -1; dw <= 1; ++dw) {if(abs(0-dh)+abs(0-dw)==2)continue;int nh = h + dh, nw = w + dw;// 場外アウトしたり、0 だったりはスルーif (nh < 0 || nh >= H || nw < 0 || nw >= W) continue;if (memo[nh][nw] == 'x') continue;// 再帰的に探索dfs(nh, nw);}}}*/int medi(int a,int b,int c){return a+b+c-max({a,b,c})-min({a,b,c});}int XOR(int a, int b) {if (a == 0 || b == 0) {return a + b;}int ni = 1;rep(0, i, 41) {n2[i] = ni;ni *= 2;}rep(0, i, 41)nis[i] = 0;for (int i = 40;i >= 0;i -= 1) {if (a >= n2[i]) {nis[i]++;a -= n2[i];}if (b >= n2[i]) {nis[i]++;b -= n2[i];}}int sum = 0;rep(0, i, 41)sum += (nis[i] % 2 * n2[i]);return sum;}//int ma[1024577][21];//for(int bit=0;bit<(1<<n);bit++)rep(0,i,n)if(bit&(1<<i))ma[bit][i]=1;struct UnionFind {vector<int> par; // par[i]:iの親の番号 (例) par[3] = 2 : 3の親が2UnionFind(int N) : par(N) { //最初は全てが根であるとして初期化for (int i = 0; i < N; i++) par[i] = i;}int root(int x) { // データxが属する木の根を再帰で得る:root(x) = {xの木の根}if (par[x] == x) return x;return par[x] = root(par[x]);}void unite(int x, int y) { // xとyの木を併合int rx = root(x); //xの根をrxint ry = root(y); //yの根をryif (rx == ry) return; //xとyの根が同じ(=同じ木にある)時はそのままpar[rx] = ry; //xとyの根が同じでない(=同じ木にない)時:xの根rxをyの根ryにつける}bool same(int x, int y) { // 2つのデータx, yが属する木が同じならtrueを返すint rx = root(x);int ry = root(y);return rx == ry;}};int n;int a[214514],b[214514];vector<int> ve[214514];int solve1(){Graph G(n);rep(0,i,n-1){G[a[i]].pb(b[i]);G[b[i]].pb(a[i]);}rep(0,i,n){if(G[i].size()==1){dfs(G,i,-1,0);break;}}rep(0,i,n-1){if(depth[a[i]]>depth[b[i]]){ve[a[i]].pb(n-subtreesize[a[i]]);ve[b[i]].pb(subtreesize[a[i]]);}else{ve[b[i]].pb(n-subtreesize[b[i]]);ve[a[i]].pb(subtreesize[b[i]]);}}int ans=0;rep(0,i,n){ans+=2*n-1;int sum=0;rep(0,j,ve[i].size())sum+=ve[i][j];rep(0,j,ve[i].size())ans+=(sum-ve[i][j])*ve[i][j];ve[i].clear();}G.clear();return ans;}int solve2(){Graph g(n);rep(0,i,n-1){g[a[i]].pb(b[i]);g[b[i]].pb(a[i]);}int sum=0;rep(0,i,n){rep(0,j,n)subtreesize[j]=0;dfs(g,i,-1,0);rep(0,j,n)sum+=subtreesize[j];}g.clear();return sum;}signed main(){cin>>n;rep(0,i,n-1){cin>>a[i]>>b[i];a[i]-=1;b[i]-=1;}c(solve1())}