結果
問題 | No.650 行列木クエリ |
ユーザー | nok0 |
提出日時 | 2021-02-06 18:36:51 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 613 ms / 2,000 ms |
コード長 | 37,668 bytes |
コンパイル時間 | 5,460 ms |
コンパイル使用メモリ | 311,448 KB |
実行使用メモリ | 57,728 KB |
最終ジャッジ日時 | 2024-07-03 06:25:56 |
合計ジャッジ時間 | 8,958 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 417 ms
15,360 KB |
testcase_02 | AC | 610 ms
53,300 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 425 ms
15,104 KB |
testcase_05 | AC | 613 ms
53,000 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 1 ms
6,940 KB |
testcase_08 | AC | 297 ms
16,256 KB |
testcase_09 | AC | 434 ms
57,728 KB |
testcase_10 | AC | 2 ms
6,940 KB |
ソースコード
/** * author: nok0 * created: 2021.02.06 17:34:10 **/ #ifdef LOCAL #define _GLIBCXX_DEBUG #endif #include <bits/stdc++.h> using namespace std; #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #endif #pragma region Macros // rep macro #define foa(v, a) for(auto &v : a) #define REPname(a, b, c, d, e, ...) e #define REP(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__) #define REP0(x) for(int i = 0; i < (x); ++i) #define REP1(i, x) for(int i = 0; i < (x); ++i) #define REP2(i, l, r) for(int i = (l); i < (r); ++i) #define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c)) #define REPSname(a, b, c, ...) c #define REPS(...) REPSname(__VA_ARGS__, REPS1, REPS0)(__VA_ARGS__) #define REPS0(x) for(int i = 1; i <= (x); ++i) #define REPS1(i, x) for(int i = 1; i <= (x); ++i) #define RREPname(a, b, c, d, e, ...) e #define RREP(...) RREPname(__VA_ARGS__, RREP3, RREP2, RREP1, RREP0)(__VA_ARGS__) #define RREP0(x) for(int i = (x)-1; i >= 0; --i) #define RREP1(i, x) for(int i = (x)-1; i >= 0; --i) #define RREP2(i, r, l) for(int i = (r)-1; i >= (l); --i) #define RREP3(i, r, l, c) for(int i = (r)-1; i >= (l); i -= (c)) #define RREPSname(a, b, c, ...) c #define RREPS(...) RREPSname(__VA_ARGS__, RREPS1, RREPS0)(__VA_ARGS__) #define RREPS0(x) for(int i = (x); i >= 1; --i) #define RREPS1(i, x) for(int i = (x); i >= 1; --i) // name macro #define pb push_back #define eb emplace_back #define SZ(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define popcnt(x) __builtin_popcountll(x) template <class T = int> using V = std::vector<T>; template <class T = int> using VV = std::vector<std::vector<T>>; template <class T> using pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>; using ll = long long; using ld = long double; using int128 = __int128_t; using pii = std::pair<int, int>; using pll = std::pair<long long, long long>; // input macro template <class T, class U> std::istream &operator>>(std::istream &is, std::pair<T, U> &p) { is >> p.first >> p.second; return is; } template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for(T &i : v) is >> i; return is; } std::istream &operator>>(std::istream &is, __int128_t &a) { std::string s; is >> s; __int128_t ret = 0; for(int i = 0; i < s.length(); i++) if('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; a = ret * (s[0] == '-' ? -1 : 1); return is; } #if __has_include(<atcoder/all>) std::istream &operator>>(std::istream &is, atcoder::modint998244353 &a) { long long v; is >> v; a = v; return is; } std::istream &operator>>(std::istream &is, atcoder::modint1000000007 &a) { long long v; is >> v; a = v; return is; } template <int m> std::istream &operator>>(std::istream &is, atcoder::static_modint<m> &a) { long long v; is >> v; a = v; return is; } template <int m> std::istream &operator>>(std::istream &is, atcoder::dynamic_modint<m> &a) { long long v; is >> v; a = v; return is; } #endif namespace scanner { void scan(int &a) { std::cin >> a; } void scan(long long &a) { std::cin >> a; } void scan(std::string &a) { std::cin >> a; } void scan(char &a) { std::cin >> a; } void scan(char a[]) { std::scanf("%s", a); } void scan(double &a) { std::cin >> a; } void scan(long double &a) { std::cin >> a; } template <class T, class U> void scan(std::pair<T, U> &p) { std::cin >> p; } template <class T> void scan(std::vector<T> &a) { std::cin >> a; } void INPUT() {} template <class Head, class... Tail> void INPUT(Head &head, Tail &... tail) { scan(head); INPUT(tail...); } } // namespace scanner #define VEC(type, name, size) \ std::vector<type> name(size); \ scanner::INPUT(name) #define VVEC(type, name, h, w) \ std::vector<std::vector<type>> name(h, std::vector<type>(w)); \ scanner::INPUT(name) #define INT(...) \ int __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define LL(...) \ long long __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define STR(...) \ std::string __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define DOUBLE(...) \ double __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define LD(...) \ long double __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) // output-macro template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &a) { for(int i = 0; i < int(a.size()); ++i) { if(i) os << " "; os << a[i]; } return os; } std::ostream &operator<<(std::ostream &dest, __int128_t &value) { std::ostream::sentry s(dest); if(s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char *d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while(tmp != 0); if(value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if(dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } #if __has_include(<atcoder/all>) std::ostream &operator<<(std::ostream &os, const atcoder::modint998244353 &a) { return os << a.val(); } std::ostream &operator<<(std::ostream &os, const atcoder::modint1000000007 &a) { return os << a.val(); } template <int m> std::ostream &operator<<(std::ostream &os, const atcoder::static_modint<m> &a) { return os << a.val(); } template <int m> std::ostream &operator<<(std::ostream &os, const atcoder::dynamic_modint<m> &a) { return os << a.val(); } #endif template <class T> void print(const T a) { std::cout << a << '\n'; } template <class Head, class... Tail> void print(Head H, Tail... T) { std::cout << H << ' '; print(T...); } template <class T> void printel(const T a) { std::cout << a << '\n'; } template <class T> void printel(const std::vector<T> &a) { for(const auto &v : a) std::cout << v << '\n'; } template <class Head, class... Tail> void printel(Head H, Tail... T) { std::cout << H << '\n'; printel(T...); } void Yes(const bool b = true) { std::cout << (b ? "Yes\n" : "No\n"); } void No() { std::cout << "No\n"; } void YES(const bool b = true) { std::cout << (b ? "YES\n" : "NO\n"); } void NO() { std::cout << "NO\n"; } void err(const bool b = true) { if(b) { std::cout << "-1\n", exit(0); } } //debug macro namespace debugger { template <class T> void view(const std::vector<T> &a) { std::cerr << "{ "; for(const auto &v : a) { std::cerr << v << ", "; } std::cerr << "\b\b }"; } template <class T> void view(const std::vector<std::vector<T>> &a) { std::cerr << "{\n"; for(const auto &v : a) { std::cerr << "\t"; view(v); std::cerr << "\n"; } std::cerr << "}"; } template <class T, class U> void view(const std::vector<std::pair<T, U>> &a) { std::cerr << "{\n"; for(const auto &p : a) std::cerr << "\t(" << p.first << ", " << p.second << ")\n"; std::cerr << "}"; } template <class T, class U> void view(const std::map<T, U> &m) { std::cerr << "{\n"; for(const auto &p : m) std::cerr << "\t[" << p.first << "] : " << p.second << "\n"; std::cerr << "}"; } template <class T, class U> void view(const std::pair<T, U> &p) { std::cerr << "(" << p.first << ", " << p.second << ")"; } template <class T> void view(const std::set<T> &s) { std::cerr << "{ "; for(auto &v : s) { view(v); std::cerr << ", "; } std::cerr << "\b\b }"; } template <class T> void view(const T &e) { std::cerr << e; } } // namespace debugger #ifdef LOCAL void debug_out() {} template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { debugger::view(H); std::cerr << ", "; debug_out(T...); } #define debug(...) \ do { \ std::cerr << __LINE__ << " [" << #__VA_ARGS__ << "] : ["; \ debug_out(__VA_ARGS__); \ std::cerr << "\b\b]\n"; \ } while(false) #else #define debug(...) (void(0)) #endif // vector macro template <class T> int lb(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x))); } template <class T> int ub(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x))); } template <class T> void UNIQUE(std::vector<T> &a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template <class T> std::vector<T> press(std::vector<T> &a) { auto res = a; UNIQUE(res); for(auto &v : a) v = lb(res, v); return res; } #define SORTname(a, b, c, ...) c #define SORT(...) SORTname(__VA_ARGS__, SORT1, SORT0, ...)(__VA_ARGS__) #define SORT0(a) std::sort((a).begin(), (a).end()) #define SORT1(a, c) std::sort((a).begin(), (a).end(), [](const auto x, const auto y) { return x c y; }) template <class T> void ADD(std::vector<T> &a, const T x) { for(auto &v : a) v += x; } template <class T> void SUB(std::vector<T> &a, const T x = 1) { for(auto &v : a) v -= x; } template <class T> void MUL(std::vector<T> &a, const T x) { for(auto &v : a) v *= x; } template <class T> void DIV(std::vector<T> &a, const T x) { for(auto &v : a) v /= x; } // math macro template <class T, class U> inline bool chmin(T &a, const U &b) { return a > b ? a = b, true : false; } template <class T, class U> inline bool chmax(T &a, const U &b) { return a < b ? a = b, true : false; } template <class T> T divup(T x, T y) { return (x + y - 1) / y; } template <class T> T POW(T a, long long n) { T ret = 1; while(n) { if(n & 1) ret *= a; a *= a; n >>= 1; } return ret; } // modpow long long POW(long long a, long long n, const int mod) { long long ret = 1; while(n) { if(n & 1) (ret *= a) %= mod; (a *= a) %= mod; n >>= 1; } return ret; } // others struct fast_io { fast_io() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); } } fast_io_; const int inf = 1e9; const ll INF = 1e18; #pragma endregion #include <algorithm> #include <cassert> #include <deque> #include <iostream> #include <queue> #include <vector> #pragma region graph struct Edge { int to; long long cost; Edge() = default; Edge(int to_, long long cost_) : to(to_), cost(cost_) {} bool operator<(const Edge &a) const { return cost < a.cost; } bool operator>(const Edge &a) const { return cost > a.cost; } friend std::ostream &operator<<(std::ostream &s, Edge &a) { s << "to: " << a.to << ", cost: " << a.cost; return s; } }; class Graph { std::vector<std::vector<Edge>> edges; public: inline const std::vector<Edge> &operator[](int k) const { return edges[k]; } inline std::vector<Edge> &operator[](int k) { return edges[k]; } int size() const { return edges.size(); } void resize(const int n) { edges.resize(n); } Graph() = default; Graph(int n) : edges(n) {} Graph(int n, int e, bool weight = 0, bool directed = 0, int idx = 1) : edges(n) { input(e, weight, directed, idx); } const long long INF = 3e18; void input(int e = -1, bool weight = 0, bool directed = false, int idx = 1) { if(e == -1) e = size() - 1; while(e--) { int u, v; long long cost = 1; std::cin >> u >> v; if(weight) std::cin >> cost; u -= idx, v -= idx; edges[u].emplace_back(v, cost); if(!directed) edges[v].emplace_back(u, cost); } } void add_edge(int u, int v, long long cost = 1, bool directed = false, int idx = 0) { u -= idx, v -= idx; edges[u].emplace_back(v, cost); if(!directed) edges[v].emplace_back(u, cost); } // Ο(V+E) std::vector<long long> bfs(int s) { std::vector<long long> dist(size(), INF); std::queue<int> que; dist[s] = 0; que.push(s); while(!que.empty()) { int v = que.front(); que.pop(); for(auto &e : edges[v]) { if(dist[e.to] != INF) continue; dist[e.to] = dist[v] + e.cost; que.push(e.to); } } return dist; } // Ο(V+E) // constraint: cost of each edge is zero or one std::vector<long long> zero_one_bfs(int s) { std::vector<long long> dist(size(), INF); std::deque<int> deq; dist[s] = 0; deq.push_back(s); while(!deq.empty()) { int v = deq.front(); deq.pop_front(); for(auto &e : edges[v]) { assert(0LL <= e.cost and e.cost < 2LL); if(e.cost and dist[e.to] > dist[v] + 1) { dist[e.to] = dist[v] + 1; deq.push_back(e.to); } else if(!e.cost and dist[e.to] > dist[v]) { dist[v] = dist[e.to]; deq.push_front(e.to); } } } return dist; } // Ο((E+V)logV) // cannot reach: INF std::vector<long long> dijkstra(int s) { // verified std::vector<long long> dist(size(), INF); const auto compare = [](const std::pair<long long, int> &a, const std::pair<long long, int> &b) { return a.first > b.first; }; std::priority_queue<std::pair<long long, int>, std::vector<std::pair<long long, int>>, decltype(compare)> que{compare}; dist[s] = 0; que.emplace(0, s); while(!que.empty()) { std::pair<long long, int> p = que.top(); que.pop(); int v = p.second; if(dist[v] < p.first) continue; for(auto &e : edges[v]) { if(dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist[v] + e.cost; que.emplace(dist[e.to], e.to); } } } return dist; } // Ο(VE) // cannot reach: INF // negative cycle: -INF std::vector<long long> bellman_ford(int s) { // verified int n = size(); std::vector<long long> res(n, INF); res[s] = 0; for(int loop = 0; loop < n - 1; loop++) { for(int v = 0; v < n; v++) { if(res[v] == INF) continue; for(auto &e : edges[v]) { res[e.to] = std::min(res[e.to], res[v] + e.cost); } } } std::queue<int> que; std::vector<int> chk(n); for(int v = 0; v < n; v++) { if(res[v] == INF) continue; for(auto &e : edges[v]) { if(res[e.to] > res[v] + e.cost and !chk[e.to]) { que.push(e.to); chk[e.to] = 1; } } } while(!que.empty()) { int now = que.front(); que.pop(); for(auto &e : edges[now]) { if(!chk[e.to]) { chk[e.to] = 1; que.push(e.to); } } } for(int i = 0; i < n; i++) if(chk[i]) res[i] = -INF; return res; } // Ο(V^3) std::vector<std::vector<long long>> warshall_floyd() { // verified int n = size(); std::vector<std::vector<long long>> dist(n, std::vector<long long>(n, INF)); for(int i = 0; i < n; i++) dist[i][i] = 0; for(int i = 0; i < n; i++) for(auto &e : edges[i]) dist[i][e.to] = std::min(dist[i][e.to], e.cost); for(int k = 0; k < n; k++) for(int i = 0; i < n; i++) { if(dist[i][k] == INF) continue; for(int j = 0; j < n; j++) { if(dist[k][j] == INF) continue; dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]); } } return dist; } // Ο(V) (using DFS) // if a directed cycle exists, return {} std::vector<int> topological_sort() { // verified std::vector<int> res; int n = size(); std::vector<int> used(n, 0); bool not_DAG = false; auto dfs = [&](auto self, int k) -> void { if(not_DAG) return; if(used[k]) { if(used[k] == 1) not_DAG = true; return; } used[k] = 1; for(auto &e : edges[k]) self(self, e.to); used[k] = 2; res.push_back(k); }; for(int i = 0; i < n; i++) dfs(dfs, i); if(not_DAG) return std::vector<int>{}; std::reverse(res.begin(), res.end()); return res; } bool is_DAG() { return !topological_sort().empty(); } // verified // Ο(V) // array of the distance from each vertex to the most distant vertex std::vector<long long> height() { // verified auto vec1 = bfs(0); int v1 = -1, v2 = -1; long long dia = -1; for(int i = 0; i < int(size()); i++) if(dia < vec1[i]) dia = vec1[i], v1 = i; vec1 = bfs(v1); dia = -1; for(int i = 0; i < int(size()); i++) if(dia < vec1[i]) dia = vec1[i], v2 = i; auto vec2 = bfs(v2); for(int i = 0; i < int(size()); i++) { if(vec1[i] < vec2[i]) vec1[i] = vec2[i]; } return vec1; } // O(V+E) // vector<(int)(0 or 1)> // if it is not bipartite, return {} std::vector<int> bipartite_grouping() { std::vector<int> colors(size(), -1); auto dfs = [&](auto self, int now, int col) -> bool { colors[now] = col; for(auto &e : edges[now]) { if(col == colors[e.to]) return false; if(colors[e.to] == -1 and !self(self, e.to, !col)) return false; } return true; }; for(int i = 0; i < int(size()); i++) if(!colors[i] and !dfs(dfs, i, 0)) return std::vector<int>{}; return colors; } bool is_bipartite() { return !bipartite_grouping().empty(); } // Ο(V+E) // ((v1, v2), diameter) std::pair<std::pair<int, int>, long long> diameter() { // verified auto vec = bfs(0); int v1 = -1, v2 = -1; long long dia = -1; for(int i = 0; i < int(size()); i++) if(dia < vec[i]) dia = vec[i], v1 = i; vec = bfs(v1); dia = -1; for(int i = 0; i < int(size()); i++) if(dia < vec[i]) dia = vec[i], v2 = i; std::pair<std::pair<int, int>, long long> res = {{v1, v2}, dia}; return res; } // Ο(ElogV) long long prim() { // verified long long res = 0; std::priority_queue<Edge, std::vector<Edge>, std::greater<Edge>> que; for(auto &e : edges[0]) que.push(e); std::vector<int> chk(size()); chk[0] = 1; int cnt = 1; while(cnt < size()) { auto e = que.top(); que.pop(); if(chk[e.to]) continue; cnt++; res += e.cost; chk[e.to] = 1; for(auto &e2 : edges[e.to]) que.push(e2); } return res; } // Ο(ElogE) long long kruskal() { // verified std::vector<std::tuple<int, int, long long>> Edges; for(int i = 0; i < int(size()); i++) for(auto &e : edges[i]) Edges.emplace_back(i, e.to, e.cost); std::sort(Edges.begin(), Edges.end(), [](const std::tuple<int, int, long long> &a, const std::tuple<int, int, long long> &b) { return std::get<2>(a) < std::get<2>(b); }); std::vector<int> uf_data(size(), -1); auto root = [&uf_data](auto self, int x) -> int { if(uf_data[x] < 0) return x; return uf_data[x] = self(self, uf_data[x]); }; auto unite = [&uf_data, &root](int u, int v) -> bool { u = root(root, u), v = root(root, v); if(u == v) return false; if(uf_data[u] > uf_data[v]) std::swap(u, v); uf_data[u] += uf_data[v]; uf_data[v] = u; return true; }; long long ret = 0; for(auto &e : Edges) if(unite(std::get<0>(e), std::get<1>(e))) ret += std::get<2>(e); return ret; } // O(V) std::vector<int> centroid() { int n = size(); std::vector<int> centroid, sz(n); auto dfs = [&](auto self, int now, int per) -> void { sz[now] = 1; bool is_centroid = true; for(auto &e : edges[now]) { if(e.to != per) { self(self, e.to, now); sz[now] += sz[e.to]; if(sz[e.to] > n / 2) is_centroid = false; } } if(n - sz[now] > n / 2) is_centroid = false; if(is_centroid) centroid.push_back(now); }; dfs(dfs, 0, -1); return centroid; } // O(V+E) // bridge: (s, t) (s < t); std::pair<std::vector<std::pair<int, int>>, std::vector<int>> bridges_and_articulations() { // verified std::vector<int> order(size(), -1), low(size()), articulation; int order_next = 0; std::vector<std::pair<int, int>> bridge; auto dfs = [&](auto self, int now, int par = -1) -> void { low[now] = order[now] = order_next++; bool is_articulation = false; int cnt = 0; for(auto &ed : edges[now]) { int &nxt = ed.to; if(nxt == par) continue; if(order[nxt] == -1) { cnt++; self(self, nxt, now); if(order[now] < low[nxt]) bridge.push_back(std::minmax(now, nxt)); if(order[now] <= low[nxt]) is_articulation = true; low[now] = std::min(low[now], low[nxt]); } else if(order[now] > order[nxt]) { low[now] = std::min(low[now], order[nxt]); } } if(par == -1 and cnt < 2) is_articulation = false; if(is_articulation) articulation.push_back(now); return; }; for(int i = 0; i < (int)size(); i++) if(order[i] == -1) dfs(dfs, i); return std::make_pair(bridge, articulation); } // Ο(V+E) // directed graph from root to leaf Graph root_to_leaf(int root = 0) { Graph res(size()); std::vector<int> chk(size(), 0); chk[root] = 1; auto dfs = [&](auto self, int now) -> void { for(auto &e : edges[now]) { if(chk[e.to] == 1) continue; chk[e.to] = 1; res.add_edge(now, e.to, e.cost, 1, 0); self(self, e.to); } }; dfs(dfs, root); return res; } // Ο(V+E) // directed graph from leaf to root Graph leaf_to_root(int root = 0) { Graph res(size()); std::vector<int> chk(size(), 0); chk[root] = 1; auto dfs = [&](auto self, int now) -> void { for(auto &e : edges[now]) { if(chk[e.to] == 1) continue; chk[e.to] = 1; res.add_edge(e.to, now, e.cost, 1, 0); self(self, e.to); } }; dfs(dfs, root); return res; } // long long Chu_Liu_Edmonds(int root = 0) {} }; struct tree_doubling { private: std::vector<std::vector<int>> parent; std::vector<int> depth; std::vector<long long> dist; int max_jump = 1; void build() { for(int i = 0; i < max_jump - 1; i++) { for(int v = 0; v < (int)dist.size(); v++) { if(parent[i][v] == -1) parent[i + 1][v] = -1; else parent[i + 1][v] = parent[i][parent[i][v]]; } } } public: tree_doubling() = default; tree_doubling(const Graph &g, const int root = 0) : dist(g.size()), depth(g.size()) { int n = g.size(); while((1 << max_jump) < n) max_jump++; parent.assign(max_jump, std::vector<int>(n, -1)); auto dfs = [&](auto self, int now, int per, int d, long long cost) -> void { parent[0][now] = per; depth[now] = d; dist[now] = cost; for(auto &e : g[now]) if(e.to != per) self(self, e.to, now, d + 1, cost + e.cost); }; dfs(dfs, root, -1, 0, 0LL); build(); } int lowest_common_ancestor(int u, int v) { if(depth[u] < depth[v]) std::swap(u, v); int k = parent.size(); for(int i = 0; i < k; i++) if((depth[u] - depth[v]) >> i & 1) u = parent[i][u]; if(u == v) return u; for(int i = k - 1; i >= 0; i--) if(parent[i][u] != parent[i][v]) u = parent[i][u], v = parent[i][v]; return parent[0][u]; } long long length_of_path(const int u, const int v) { return dist[u] + dist[v] - dist[lowest_common_ancestor(u, v)] * 2; } int level_ancestor(int v, int level) { assert(level >= 0); for(int jump = 0; jump < max_jump and level; jump++) { if(level & 1) v = parent[jump][v]; level >>= 1; } return v; } }; struct strongly_connected_components { private: enum { CHECKED = -1, UNCHECKED = -2 }; const Graph &graph_given; Graph graph_reversed; std::vector<int> order, group_number; /* at the beginning of the building, 'group_number' is used as 'checked' */ void dfs(int now) { if(group_number[now] != UNCHECKED) return; group_number[now] = CHECKED; for(auto &e : graph_given[now]) dfs(e.to); order.push_back(now); } void rdfs(int now, int group_count) { if(group_number[now] != UNCHECKED) return; group_number[now] = group_count; for(auto &e : graph_reversed[now]) rdfs(e.to, group_count); } void build(bool create_compressed_graph) { for(int i = 0; i < (int)graph_given.size(); i++) dfs(i); reverse(order.begin(), order.end()); group_number.assign(graph_given.size(), UNCHECKED); int group = 0; for(auto &i : order) if(group_number[i] == UNCHECKED) rdfs(i, group), group++; graph_compressed.resize(group); groups.resize(group); for(int i = 0; i < (int)graph_given.size(); i++) groups[group_number[i]].push_back(i); if(create_compressed_graph) { std::vector<int> edges(group, -1); for(int i = 0; i < group; i++) for(auto &vertex : groups[i]) for(auto &e : graph_given[vertex]) if(group_number[e.to] != i and edges[group_number[e.to]] != i) { edges[group_number[e.to]] = i; graph_compressed[i].emplace_back(group_number[e.to], 1); } } return; } public: std::vector<std::vector<int>> groups; Graph graph_compressed; strongly_connected_components(const Graph &g_, bool create_compressed_graph = false) : graph_given(g_), graph_reversed(g_.size()), group_number(g_.size(), UNCHECKED) { for(size_t i = 0; i < g_.size(); i++) for(auto &e : graph_given[i]) graph_reversed[e.to].emplace_back(i, 1); build(create_compressed_graph); } const int &operator[](const int k) { return group_number[k]; } }; struct heavy_light_decomposition { public: std::vector<int> sz, in, out, head, rev, par; private: Graph &g; void dfs_sz(int v, int p = -1) { par[v] = p; if(!g[v].empty() and g[v].front().to == p) std::swap(g[v].front(), g[v].back()); for(auto &e : g[v]) { if(e.to == p) continue; dfs_sz(e.to, v); sz[v] += sz[e.to]; if(sz[g[v].front().to] < sz[e.to]) std::swap(g[v].front(), e); } } void dfs_hld(int v, int &t, int p = -1) { in[v] = t++; rev[in[v]] = v; for(auto &e : g[v]) { if(e.to == p) continue; head[e.to] = (g[v].front().to == e.to ? head[v] : e.to); dfs_hld(e.to, t, v); } out[v] = t; } void build(int root = 0) { dfs_sz(root); int t = 0; head[root] = root; dfs_hld(root, t); } public: heavy_light_decomposition(Graph &g_, int root = 0) : g(g_) { int n = g.size(); sz.resize(n, 1); in.resize(n); out.resize(n); head.resize(n); rev.resize(n); par.resize(n); build(root); } int level_ancestor(int v, int level = 1) { while(true) { int u = head[v]; if(in[v] - level >= in[u]) return rev[in[v] - level]; level -= in[v] - in[u] + 1; v = par[u]; } } int lowest_common_ancestor(int u, int v) { for(;; v = par[head[v]]) { if(in[u] > in[v]) std::swap(u, v); if(head[u] == head[v]) return u; } } // u, v: vertex, unit: unit, q: query on a path, f: binary operation ((T, T) -> T) template <typename T, typename Q, typename F> T query(int u, int v, const T &unit, const Q &q, const F &f, bool edge = false) { T l = unit, r = unit; for(;; v = par[head[v]]) { if(in[u] > in[v]) std::swap(u, v), std::swap(l, r); if(head[u] == head[v]) break; l = f(q(in[head[v]], in[v] + 1), l); } return f(f(q(in[u] + edge, in[v] + 1), l), r); } // u,v:頂点 q:更新クエリ template <typename Q> void add(int u, int v, const Q &q, bool edge = false) { for(;; v = par[head[v]]) { if(in[u] > in[v]) std::swap(u, v); if(head[u] == head[v]) break; q(in[head[v]], in[v] + 1); } q(in[u] + edge, in[v] + 1); } std::pair<int, int> subtree(int v, bool edge = false) { return std::pair<int, int>(in[v] + edge, out[v]); } }; #pragma endregion //Segment Tree //reference materials: <https://www.creativ.xyz/segment-tree-abstraction-979/>, <https://algo-logic.info/segment-tree/> template <class Monoid> class SegTree { using F = function<Monoid(Monoid, Monoid)>; int n; // 葉の数 vector<Monoid> data; // データを格納する配列 Monoid def; // 初期値かつ単位元 F operation; // 区間クエリ関数 F update; // 点更新関数 // 区間[a,b)の総和。ノードk=[l,r)に着目 Monoid _query(int a, int b, int k, int l, int r) { if(r <= a || b <= l) return def; // 交差しない if(a <= l && r <= b) return data[k]; // a,l,r,bの順で完全に含まれる else { Monoid c1 = _query(a, b, 2 * k + 1, l, (l + r) / 2); // 左の子 Monoid c2 = _query(a, b, 2 * k + 2, (l + r) / 2, r); // 右の子 return operation(c1, c2); } } public: // _n:SegTreeのサイズ, _def:初期値かつ単位元, _operation:クエリ関数, // _update:点更新関数 SegTree(size_t _n, Monoid _def, F _operation, F _update) : def(_def), operation(_operation), update(_update) { n = 1; while(n < _n) { n *= 2; } data = vector<Monoid>(2 * n - 1, def); } // 場所i(0-indexed)の値をxで更新 void set(int i, Monoid x) { i += n - 1; data[i] = update(data[i], x); while(i > 0) { i = (i - 1) / 2; data[i] = operation(data[i * 2 + 1], data[i * 2 + 2]); } } // 半開区間[a, b)の区間クエリ Monoid query(int a, int b) { return _query(a, b, 0, 0, n); } // 添字アクセス Monoid operator[](int i) { return data[i + n - 1]; } // 半開区間[a,b)でx以下の要素を持つ最右位置を返す(二分探索) // a:半開区間の左端, b:半開区間の右端, x:x以下の要素を求める int find_rightest(int a, int b, Monoid x) { return find_rightest_sub(a, b, x, 0, 0, n); } // 半開区間[a,b)でx以下の要素を持つ最左位置を返す(二分探索) // a:半開区間の左端, b:半開区間の右端, x:x以下の要素を求める int find_leftest(int a, int b, Monoid x) { return find_leftest_sub(a, b, x, 0, 0, n); } int find_rightest_sub(int a, int b, Monoid x, int k, int l, int r) { if(data[k] > x || r <= a || b <= l) { // 自分の値がxより大きい or [a,b)が[l,r)の範囲外ならreturn a-1 return a - 1; } else if(k >= n - 1) { // 自分が葉ならその位置をreturn return (k - (n - 1)); } else { int vr = find_rightest_sub(a, b, x, 2 * k + 2, (l + r) / 2, r); if(vr != a - 1) { // 右の部分木を見て a-1 以外ならreturn return vr; } else { // 左の部分木を見て値をreturn return find_rightest_sub(a, b, x, 2 * k + 1, l, (l + r) / 2); } } } int find_leftest_sub(int a, int b, Monoid x, int k, int l, int r) { if(data[k] > x || r <= a || b <= l) { // 自分の値がxより大きい or [a,b)が[l,r)の範囲外ならreturn b return b; } else if(k >= n - 1) { // 自分が葉ならその位置をreturn return (k - (n - 1)); } else { int vl = find_leftest_sub(a, b, x, 2 * k + 1, l, (l + r) / 2); if(vl != b) { // 左の部分木を見て b 以外ならreturn return vl; } else { // 右の部分木を見て値をreturn return find_leftest_sub(a, b, x, 2 * k + 2, (l + r) / 2, r); } } } }; template <class T> struct Matrix { private: std::vector<std::vector<T>> A; static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return mat; } public: Matrix() = default; Matrix(std::vector<std::vector<T>> &vvec) { A = vvec; } Matrix(size_t n, size_t m) : A(n, std::vector<T>(m, 0)) {} Matrix(size_t n, size_t m, T init) : A(n, std::vector<T>(m, init)) {} Matrix(size_t n, std::vector<T> &vec) : A(n, vec) {} Matrix(size_t n) : A(n, std::vector<T>(n, 0)) {} size_t height() const { return A.size(); } size_t width() const { return A[0].size(); } inline const std::vector<T> &operator[](int k) const { return A[k]; } inline std::vector<T> &operator[](int k) { return A[k]; } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() and m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return *this; } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() and m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return *this; } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); std::vector<std::vector<T>> C(n, std::vector<T>(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] += (*this)[i][k] * B[k][j]; A.swap(C); return *this; } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= (*this); *this *= *this; k >>= 1ll; } A.swap(B.A); return *this; } bool operator==(const Matrix &B) { size_t n = height(), m = width(); if(n != B.height() or m != B.width()) return false; for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) if((*this)[i][j] != B[i][j]) return false; return true; } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long &k) const { return (Matrix(*this) ^= k); } Matrix &operator+=(const T &t) { int n = height(), m = width(); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += t; return *this; } Matrix &operator-=(const T &t) { int n = height(), m = width(); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= t; return *this; } Matrix &operator*=(const T &t) { int n = height(), m = width(); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] *= t; return *this; } Matrix &operator/=(const T &t) { int n = height(), m = width(); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] /= t; return *this; } Matrix operator+(const T &t) const { return (Matrix(*this) += t); } Matrix operator-(const T &t) const { return (Matrix(*this) -= t); } Matrix operator*(const T &t) const { return (Matrix(*this) *= t); } Matrix operator/(const T &t) const { return (Matrix(*this) /= t); } friend std::ostream &operator<<(std::ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << '['; for(int j = 0; j < m; j++) os << p[i][j] << (j == m - 1 ? "]\n" : ","); } return (os); } T determinant() { Matrix B(*this); size_t n = height(), m = width(); assert(n == m); T ret = 1; for(int i = 0; i < n; i++) { int idx = -1; for(int j = i; j < n; j++) if(B[j][i] != 0) idx = j; if(idx == -1) return 0; if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < n; j++) B[i][j] /= vv; for(int j = i + 1; j < n; j++) { T a = B[j][i]; for(int k = 0; k < n; k++) { B[j][k] -= B[i][k] * a; } } } return ret; } }; //ModInt template <const int &mod> struct ModInt { private: int x; public: ModInt() : x(0) {} ModInt(long long x_) { if((x = x_ % mod + mod) >= mod) x -= mod; } int val() const { return x; } static int get_mod() { return mod; } constexpr ModInt &operator+=(ModInt rhs) { if((x += rhs.x) >= mod) x -= mod; return *this; } constexpr ModInt &operator-=(ModInt rhs) { if((x -= rhs.x) < 0) x += mod; return *this; } constexpr ModInt &operator*=(ModInt rhs) { x = (unsigned long long)x * rhs.x % mod; return *this; } constexpr ModInt &operator/=(ModInt rhs) { x = (unsigned long long)x * rhs.inv().x % mod; return *this; } constexpr ModInt operator-() const noexcept { return -x < 0 ? mod - x : -x; } constexpr ModInt operator+(ModInt rhs) const noexcept { return ModInt(*this) += rhs; } constexpr ModInt operator-(ModInt rhs) const noexcept { return ModInt(*this) -= rhs; } constexpr ModInt operator*(ModInt rhs) const noexcept { return ModInt(*this) *= rhs; } constexpr ModInt operator/(ModInt rhs) const noexcept { return ModInt(*this) /= rhs; } constexpr ModInt &operator++() { *this += 1; return *this; } constexpr ModInt operator++(int) { *this += 1; return *this - 1; } constexpr ModInt &operator--() { *this -= 1; return *this; } constexpr ModInt operator--(int) { *this -= 1; return *this + 1; } bool operator==(ModInt rhs) const { return x == rhs.x; } bool operator!=(ModInt rhs) const { return x != rhs.x; } bool operator<=(ModInt rhs) const { return x <= rhs.x; } bool operator>=(ModInt rhs) const { return x >= rhs.x; } bool operator<(ModInt rhs) const { return x < rhs.x; } bool operator>(ModInt rhs) const { return x > rhs.x; } ModInt inv() { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; std::swap(a -= t * b, b); std::swap(u -= t * v, v); } return ModInt(u); } ModInt pow(long long n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } ModInt sqrt() const { if(x <= 1) return x; int v = (mod - 1) / 2; if(pow(v) != 1) return -1; int q = mod - 1, m = 0; while(~q & 1) q >>= 1, m++; std::mt19937 mt; ModInt z = mt(); while(z.pow(v) != mod - 1) z = mt(); ModInt c = z.pow(q), t = pow(q), r = pow((q + 1) / 2); for(; m > 1; m--) { ModInt tmp = t.pow(1 << (m - 2)); if(tmp != 1) r = r * c, t = t * c * c; c = c * c; } return std::min(r.x, mod - r.x); } friend std::ostream &operator<<(std::ostream &s, ModInt<mod> a) { s << a.x; return s; } friend std::istream &operator>>(std::istream &s, ModInt<mod> &a) { s >> a.x; return s; } }; //Modulo Calculation static int MOD = 1e9 + 7; // static int MOD = 998244353; using mint = ModInt<MOD>; void main_() { INT(n); V<> res(n); Graph G(n); V<> a(n - 1), b(n - 1); REP(n - 1) { cin >> a[i] >> b[i]; G.add_edge(a[i], b[i]); } heavy_light_decomposition hld(G); Matrix<mint> uni(2, 2); uni[0] = {1, 0}; uni[1] = {0, 1}; auto op = [&](const Matrix<mint> a, const Matrix<mint> b) { return a * b; }; auto upd = [&](Matrix<mint> a, Matrix<mint> b) { return b; }; SegTree<Matrix<mint>> ST(n, uni, op, upd); auto q = [&](int l, int r) { return ST.query(l, r); }; auto f = [&](Matrix<mint> a, Matrix<mint> b) { return a * b; }; INT(Q); while(Q--) { CHAR(c); if(c == 'x') { INT(i, x, y, z, w); int v = max(hld.in[a[i]], hld.in[b[i]]); Matrix<mint> ne(2, 2); ne[0] = {x, y}; ne[1] = {z, w}; ST.set(v, ne); } if(c == 'g') { INT(i, j); auto res = hld.query(i, j, uni, q, f, 1); print(res[0][0], res[0][1], res[1][0], res[1][1]); } } } int main() { int t = 1; //cin >> t; while(t--) main_(); return 0; }