結果
| 問題 |
No.650 行列木クエリ
|
| コンテスト | |
| ユーザー |
nok0
|
| 提出日時 | 2021-02-06 18:36:51 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 688 ms / 2,000 ms |
| コード長 | 37,668 bytes |
| コンパイル時間 | 6,120 ms |
| コンパイル使用メモリ | 296,084 KB |
| 最終ジャッジ日時 | 2025-01-18 13:40:12 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 10 |
コンパイルメッセージ
main.cpp: In function ‘void scanner::scan(char*)’:
main.cpp:113:33: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
113 | void scan(char a[]) { std::scanf("%s", a); }
| ~~~~~~~~~~^~~~~~~~~
ソースコード
/**
* author: nok0
* created: 2021.02.06 17:34:10
**/
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#include <bits/stdc++.h>
using namespace std;
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
#pragma region Macros
// rep macro
#define foa(v, a) for(auto &v : a)
#define REPname(a, b, c, d, e, ...) e
#define REP(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)
#define REP0(x) for(int i = 0; i < (x); ++i)
#define REP1(i, x) for(int i = 0; i < (x); ++i)
#define REP2(i, l, r) for(int i = (l); i < (r); ++i)
#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))
#define REPSname(a, b, c, ...) c
#define REPS(...) REPSname(__VA_ARGS__, REPS1, REPS0)(__VA_ARGS__)
#define REPS0(x) for(int i = 1; i <= (x); ++i)
#define REPS1(i, x) for(int i = 1; i <= (x); ++i)
#define RREPname(a, b, c, d, e, ...) e
#define RREP(...) RREPname(__VA_ARGS__, RREP3, RREP2, RREP1, RREP0)(__VA_ARGS__)
#define RREP0(x) for(int i = (x)-1; i >= 0; --i)
#define RREP1(i, x) for(int i = (x)-1; i >= 0; --i)
#define RREP2(i, r, l) for(int i = (r)-1; i >= (l); --i)
#define RREP3(i, r, l, c) for(int i = (r)-1; i >= (l); i -= (c))
#define RREPSname(a, b, c, ...) c
#define RREPS(...) RREPSname(__VA_ARGS__, RREPS1, RREPS0)(__VA_ARGS__)
#define RREPS0(x) for(int i = (x); i >= 1; --i)
#define RREPS1(i, x) for(int i = (x); i >= 1; --i)
// name macro
#define pb push_back
#define eb emplace_back
#define SZ(x) ((int)(x).size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define popcnt(x) __builtin_popcountll(x)
template <class T = int>
using V = std::vector<T>;
template <class T = int>
using VV = std::vector<std::vector<T>>;
template <class T>
using pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;
using ll = long long;
using ld = long double;
using int128 = __int128_t;
using pii = std::pair<int, int>;
using pll = std::pair<long long, long long>;
// input macro
template <class T, class U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <class T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
for(T &i : v) is >> i;
return is;
}
std::istream &operator>>(std::istream &is, __int128_t &a) {
std::string s;
is >> s;
__int128_t ret = 0;
for(int i = 0; i < s.length(); i++)
if('0' <= s[i] and s[i] <= '9')
ret = 10 * ret + s[i] - '0';
a = ret * (s[0] == '-' ? -1 : 1);
return is;
}
#if __has_include(<atcoder/all>)
std::istream &operator>>(std::istream &is, atcoder::modint998244353 &a) {
long long v;
is >> v;
a = v;
return is;
}
std::istream &operator>>(std::istream &is, atcoder::modint1000000007 &a) {
long long v;
is >> v;
a = v;
return is;
}
template <int m>
std::istream &operator>>(std::istream &is, atcoder::static_modint<m> &a) {
long long v;
is >> v;
a = v;
return is;
}
template <int m>
std::istream &operator>>(std::istream &is, atcoder::dynamic_modint<m> &a) {
long long v;
is >> v;
a = v;
return is;
}
#endif
namespace scanner {
void scan(int &a) { std::cin >> a; }
void scan(long long &a) { std::cin >> a; }
void scan(std::string &a) { std::cin >> a; }
void scan(char &a) { std::cin >> a; }
void scan(char a[]) { std::scanf("%s", a); }
void scan(double &a) { std::cin >> a; }
void scan(long double &a) { std::cin >> a; }
template <class T, class U>
void scan(std::pair<T, U> &p) { std::cin >> p; }
template <class T>
void scan(std::vector<T> &a) { std::cin >> a; }
void INPUT() {}
template <class Head, class... Tail>
void INPUT(Head &head, Tail &... tail) {
scan(head);
INPUT(tail...);
}
} // namespace scanner
#define VEC(type, name, size) \
std::vector<type> name(size); \
scanner::INPUT(name)
#define VVEC(type, name, h, w) \
std::vector<std::vector<type>> name(h, std::vector<type>(w)); \
scanner::INPUT(name)
#define INT(...) \
int __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define LL(...) \
long long __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define STR(...) \
std::string __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define DOUBLE(...) \
double __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define LD(...) \
long double __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
// output-macro
template <class T, class U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &a) {
for(int i = 0; i < int(a.size()); ++i) {
if(i) os << " ";
os << a[i];
}
return os;
}
std::ostream &operator<<(std::ostream &dest, __int128_t &value) {
std::ostream::sentry s(dest);
if(s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while(tmp != 0);
if(value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if(dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
#if __has_include(<atcoder/all>)
std::ostream &operator<<(std::ostream &os, const atcoder::modint998244353 &a) { return os << a.val(); }
std::ostream &operator<<(std::ostream &os, const atcoder::modint1000000007 &a) { return os << a.val(); }
template <int m>
std::ostream &operator<<(std::ostream &os, const atcoder::static_modint<m> &a) { return os << a.val(); }
template <int m>
std::ostream &operator<<(std::ostream &os, const atcoder::dynamic_modint<m> &a) { return os << a.val(); }
#endif
template <class T>
void print(const T a) { std::cout << a << '\n'; }
template <class Head, class... Tail>
void print(Head H, Tail... T) {
std::cout << H << ' ';
print(T...);
}
template <class T>
void printel(const T a) { std::cout << a << '\n'; }
template <class T>
void printel(const std::vector<T> &a) {
for(const auto &v : a)
std::cout << v << '\n';
}
template <class Head, class... Tail>
void printel(Head H, Tail... T) {
std::cout << H << '\n';
printel(T...);
}
void Yes(const bool b = true) { std::cout << (b ? "Yes\n" : "No\n"); }
void No() { std::cout << "No\n"; }
void YES(const bool b = true) { std::cout << (b ? "YES\n" : "NO\n"); }
void NO() { std::cout << "NO\n"; }
void err(const bool b = true) {
if(b) {
std::cout << "-1\n", exit(0);
}
}
//debug macro
namespace debugger {
template <class T>
void view(const std::vector<T> &a) {
std::cerr << "{ ";
for(const auto &v : a) {
std::cerr << v << ", ";
}
std::cerr << "\b\b }";
}
template <class T>
void view(const std::vector<std::vector<T>> &a) {
std::cerr << "{\n";
for(const auto &v : a) {
std::cerr << "\t";
view(v);
std::cerr << "\n";
}
std::cerr << "}";
}
template <class T, class U>
void view(const std::vector<std::pair<T, U>> &a) {
std::cerr << "{\n";
for(const auto &p : a) std::cerr << "\t(" << p.first << ", " << p.second << ")\n";
std::cerr << "}";
}
template <class T, class U>
void view(const std::map<T, U> &m) {
std::cerr << "{\n";
for(const auto &p : m) std::cerr << "\t[" << p.first << "] : " << p.second << "\n";
std::cerr << "}";
}
template <class T, class U>
void view(const std::pair<T, U> &p) { std::cerr << "(" << p.first << ", " << p.second << ")"; }
template <class T>
void view(const std::set<T> &s) {
std::cerr << "{ ";
for(auto &v : s) {
view(v);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <class T>
void view(const T &e) { std::cerr << e; }
} // namespace debugger
#ifdef LOCAL
void debug_out() {}
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
debugger::view(H);
std::cerr << ", ";
debug_out(T...);
}
#define debug(...) \
do { \
std::cerr << __LINE__ << " [" << #__VA_ARGS__ << "] : ["; \
debug_out(__VA_ARGS__); \
std::cerr << "\b\b]\n"; \
} while(false)
#else
#define debug(...) (void(0))
#endif
// vector macro
template <class T>
int lb(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x))); }
template <class T>
int ub(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x))); }
template <class T>
void UNIQUE(std::vector<T> &a) {
std::sort(a.begin(), a.end());
a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <class T>
std::vector<T> press(std::vector<T> &a) {
auto res = a;
UNIQUE(res);
for(auto &v : a)
v = lb(res, v);
return res;
}
#define SORTname(a, b, c, ...) c
#define SORT(...) SORTname(__VA_ARGS__, SORT1, SORT0, ...)(__VA_ARGS__)
#define SORT0(a) std::sort((a).begin(), (a).end())
#define SORT1(a, c) std::sort((a).begin(), (a).end(), [](const auto x, const auto y) { return x c y; })
template <class T>
void ADD(std::vector<T> &a, const T x) {
for(auto &v : a) v += x;
}
template <class T>
void SUB(std::vector<T> &a, const T x = 1) {
for(auto &v : a) v -= x;
}
template <class T>
void MUL(std::vector<T> &a, const T x) {
for(auto &v : a) v *= x;
}
template <class T>
void DIV(std::vector<T> &a, const T x) {
for(auto &v : a) v /= x;
}
// math macro
template <class T, class U>
inline bool chmin(T &a, const U &b) { return a > b ? a = b, true : false; }
template <class T, class U>
inline bool chmax(T &a, const U &b) { return a < b ? a = b, true : false; }
template <class T>
T divup(T x, T y) { return (x + y - 1) / y; }
template <class T>
T POW(T a, long long n) {
T ret = 1;
while(n) {
if(n & 1) ret *= a;
a *= a;
n >>= 1;
}
return ret;
}
// modpow
long long POW(long long a, long long n, const int mod) {
long long ret = 1;
while(n) {
if(n & 1) (ret *= a) %= mod;
(a *= a) %= mod;
n >>= 1;
}
return ret;
}
// others
struct fast_io {
fast_io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
}
} fast_io_;
const int inf = 1e9;
const ll INF = 1e18;
#pragma endregion
#include <algorithm>
#include <cassert>
#include <deque>
#include <iostream>
#include <queue>
#include <vector>
#pragma region graph
struct Edge {
int to;
long long cost;
Edge() = default;
Edge(int to_, long long cost_) : to(to_), cost(cost_) {}
bool operator<(const Edge &a) const { return cost < a.cost; }
bool operator>(const Edge &a) const { return cost > a.cost; }
friend std::ostream &operator<<(std::ostream &s, Edge &a) {
s << "to: " << a.to << ", cost: " << a.cost;
return s;
}
};
class Graph {
std::vector<std::vector<Edge>> edges;
public:
inline const std::vector<Edge> &operator[](int k) const { return edges[k]; }
inline std::vector<Edge> &operator[](int k) { return edges[k]; }
int size() const { return edges.size(); }
void resize(const int n) { edges.resize(n); }
Graph() = default;
Graph(int n) : edges(n) {}
Graph(int n, int e, bool weight = 0, bool directed = 0, int idx = 1) : edges(n) { input(e, weight, directed, idx); }
const long long INF = 3e18;
void input(int e = -1, bool weight = 0, bool directed = false, int idx = 1) {
if(e == -1) e = size() - 1;
while(e--) {
int u, v;
long long cost = 1;
std::cin >> u >> v;
if(weight) std::cin >> cost;
u -= idx, v -= idx;
edges[u].emplace_back(v, cost);
if(!directed) edges[v].emplace_back(u, cost);
}
}
void add_edge(int u, int v, long long cost = 1, bool directed = false, int idx = 0) {
u -= idx, v -= idx;
edges[u].emplace_back(v, cost);
if(!directed) edges[v].emplace_back(u, cost);
}
// Ο(V+E)
std::vector<long long> bfs(int s) {
std::vector<long long> dist(size(), INF);
std::queue<int> que;
dist[s] = 0;
que.push(s);
while(!que.empty()) {
int v = que.front();
que.pop();
for(auto &e : edges[v]) {
if(dist[e.to] != INF) continue;
dist[e.to] = dist[v] + e.cost;
que.push(e.to);
}
}
return dist;
}
// Ο(V+E)
// constraint: cost of each edge is zero or one
std::vector<long long> zero_one_bfs(int s) {
std::vector<long long> dist(size(), INF);
std::deque<int> deq;
dist[s] = 0;
deq.push_back(s);
while(!deq.empty()) {
int v = deq.front();
deq.pop_front();
for(auto &e : edges[v]) {
assert(0LL <= e.cost and e.cost < 2LL);
if(e.cost and dist[e.to] > dist[v] + 1) {
dist[e.to] = dist[v] + 1;
deq.push_back(e.to);
} else if(!e.cost and dist[e.to] > dist[v]) {
dist[v] = dist[e.to];
deq.push_front(e.to);
}
}
}
return dist;
}
// Ο((E+V)logV)
// cannot reach: INF
std::vector<long long> dijkstra(int s) { // verified
std::vector<long long> dist(size(), INF);
const auto compare = [](const std::pair<long long, int> &a, const std::pair<long long, int> &b) { return a.first > b.first; };
std::priority_queue<std::pair<long long, int>, std::vector<std::pair<long long, int>>, decltype(compare)> que{compare};
dist[s] = 0;
que.emplace(0, s);
while(!que.empty()) {
std::pair<long long, int> p = que.top();
que.pop();
int v = p.second;
if(dist[v] < p.first) continue;
for(auto &e : edges[v]) {
if(dist[e.to] > dist[v] + e.cost) {
dist[e.to] = dist[v] + e.cost;
que.emplace(dist[e.to], e.to);
}
}
}
return dist;
}
// Ο(VE)
// cannot reach: INF
// negative cycle: -INF
std::vector<long long> bellman_ford(int s) { // verified
int n = size();
std::vector<long long> res(n, INF);
res[s] = 0;
for(int loop = 0; loop < n - 1; loop++) {
for(int v = 0; v < n; v++) {
if(res[v] == INF) continue;
for(auto &e : edges[v]) {
res[e.to] = std::min(res[e.to], res[v] + e.cost);
}
}
}
std::queue<int> que;
std::vector<int> chk(n);
for(int v = 0; v < n; v++) {
if(res[v] == INF) continue;
for(auto &e : edges[v]) {
if(res[e.to] > res[v] + e.cost and !chk[e.to]) {
que.push(e.to);
chk[e.to] = 1;
}
}
}
while(!que.empty()) {
int now = que.front();
que.pop();
for(auto &e : edges[now]) {
if(!chk[e.to]) {
chk[e.to] = 1;
que.push(e.to);
}
}
}
for(int i = 0; i < n; i++)
if(chk[i]) res[i] = -INF;
return res;
}
// Ο(V^3)
std::vector<std::vector<long long>> warshall_floyd() { // verified
int n = size();
std::vector<std::vector<long long>> dist(n, std::vector<long long>(n, INF));
for(int i = 0; i < n; i++) dist[i][i] = 0;
for(int i = 0; i < n; i++)
for(auto &e : edges[i]) dist[i][e.to] = std::min(dist[i][e.to], e.cost);
for(int k = 0; k < n; k++)
for(int i = 0; i < n; i++) {
if(dist[i][k] == INF) continue;
for(int j = 0; j < n; j++) {
if(dist[k][j] == INF) continue;
dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
return dist;
}
// Ο(V) (using DFS)
// if a directed cycle exists, return {}
std::vector<int> topological_sort() { // verified
std::vector<int> res;
int n = size();
std::vector<int> used(n, 0);
bool not_DAG = false;
auto dfs = [&](auto self, int k) -> void {
if(not_DAG) return;
if(used[k]) {
if(used[k] == 1) not_DAG = true;
return;
}
used[k] = 1;
for(auto &e : edges[k]) self(self, e.to);
used[k] = 2;
res.push_back(k);
};
for(int i = 0; i < n; i++) dfs(dfs, i);
if(not_DAG) return std::vector<int>{};
std::reverse(res.begin(), res.end());
return res;
}
bool is_DAG() { return !topological_sort().empty(); } // verified
// Ο(V)
// array of the distance from each vertex to the most distant vertex
std::vector<long long> height() { // verified
auto vec1 = bfs(0);
int v1 = -1, v2 = -1;
long long dia = -1;
for(int i = 0; i < int(size()); i++)
if(dia < vec1[i]) dia = vec1[i], v1 = i;
vec1 = bfs(v1);
dia = -1;
for(int i = 0; i < int(size()); i++)
if(dia < vec1[i]) dia = vec1[i], v2 = i;
auto vec2 = bfs(v2);
for(int i = 0; i < int(size()); i++) {
if(vec1[i] < vec2[i]) vec1[i] = vec2[i];
}
return vec1;
}
// O(V+E)
// vector<(int)(0 or 1)>
// if it is not bipartite, return {}
std::vector<int> bipartite_grouping() {
std::vector<int> colors(size(), -1);
auto dfs = [&](auto self, int now, int col) -> bool {
colors[now] = col;
for(auto &e : edges[now]) {
if(col == colors[e.to]) return false;
if(colors[e.to] == -1 and !self(self, e.to, !col)) return false;
}
return true;
};
for(int i = 0; i < int(size()); i++)
if(!colors[i] and !dfs(dfs, i, 0)) return std::vector<int>{};
return colors;
}
bool is_bipartite() { return !bipartite_grouping().empty(); }
// Ο(V+E)
// ((v1, v2), diameter)
std::pair<std::pair<int, int>, long long> diameter() { // verified
auto vec = bfs(0);
int v1 = -1, v2 = -1;
long long dia = -1;
for(int i = 0; i < int(size()); i++)
if(dia < vec[i]) dia = vec[i], v1 = i;
vec = bfs(v1);
dia = -1;
for(int i = 0; i < int(size()); i++)
if(dia < vec[i]) dia = vec[i], v2 = i;
std::pair<std::pair<int, int>, long long> res = {{v1, v2}, dia};
return res;
}
// Ο(ElogV)
long long prim() { // verified
long long res = 0;
std::priority_queue<Edge, std::vector<Edge>, std::greater<Edge>> que;
for(auto &e : edges[0]) que.push(e);
std::vector<int> chk(size());
chk[0] = 1;
int cnt = 1;
while(cnt < size()) {
auto e = que.top();
que.pop();
if(chk[e.to]) continue;
cnt++;
res += e.cost;
chk[e.to] = 1;
for(auto &e2 : edges[e.to]) que.push(e2);
}
return res;
}
// Ο(ElogE)
long long kruskal() { // verified
std::vector<std::tuple<int, int, long long>> Edges;
for(int i = 0; i < int(size()); i++)
for(auto &e : edges[i]) Edges.emplace_back(i, e.to, e.cost);
std::sort(Edges.begin(), Edges.end(), [](const std::tuple<int, int, long long> &a, const std::tuple<int, int, long long> &b) {
return std::get<2>(a) < std::get<2>(b);
});
std::vector<int> uf_data(size(), -1);
auto root = [&uf_data](auto self, int x) -> int {
if(uf_data[x] < 0) return x;
return uf_data[x] = self(self, uf_data[x]);
};
auto unite = [&uf_data, &root](int u, int v) -> bool {
u = root(root, u), v = root(root, v);
if(u == v) return false;
if(uf_data[u] > uf_data[v]) std::swap(u, v);
uf_data[u] += uf_data[v];
uf_data[v] = u;
return true;
};
long long ret = 0;
for(auto &e : Edges)
if(unite(std::get<0>(e), std::get<1>(e))) ret += std::get<2>(e);
return ret;
}
// O(V)
std::vector<int> centroid() {
int n = size();
std::vector<int> centroid, sz(n);
auto dfs = [&](auto self, int now, int per) -> void {
sz[now] = 1;
bool is_centroid = true;
for(auto &e : edges[now]) {
if(e.to != per) {
self(self, e.to, now);
sz[now] += sz[e.to];
if(sz[e.to] > n / 2) is_centroid = false;
}
}
if(n - sz[now] > n / 2) is_centroid = false;
if(is_centroid) centroid.push_back(now);
};
dfs(dfs, 0, -1);
return centroid;
}
// O(V+E)
// bridge: (s, t) (s < t);
std::pair<std::vector<std::pair<int, int>>, std::vector<int>> bridges_and_articulations() { // verified
std::vector<int> order(size(), -1), low(size()), articulation;
int order_next = 0;
std::vector<std::pair<int, int>> bridge;
auto dfs = [&](auto self, int now, int par = -1) -> void {
low[now] = order[now] = order_next++;
bool is_articulation = false;
int cnt = 0;
for(auto &ed : edges[now]) {
int &nxt = ed.to;
if(nxt == par) continue;
if(order[nxt] == -1) {
cnt++;
self(self, nxt, now);
if(order[now] < low[nxt]) bridge.push_back(std::minmax(now, nxt));
if(order[now] <= low[nxt]) is_articulation = true;
low[now] = std::min(low[now], low[nxt]);
} else if(order[now] > order[nxt]) {
low[now] = std::min(low[now], order[nxt]);
}
}
if(par == -1 and cnt < 2) is_articulation = false;
if(is_articulation) articulation.push_back(now);
return;
};
for(int i = 0; i < (int)size(); i++)
if(order[i] == -1) dfs(dfs, i);
return std::make_pair(bridge, articulation);
}
// Ο(V+E)
// directed graph from root to leaf
Graph root_to_leaf(int root = 0) {
Graph res(size());
std::vector<int> chk(size(), 0);
chk[root] = 1;
auto dfs = [&](auto self, int now) -> void {
for(auto &e : edges[now]) {
if(chk[e.to] == 1) continue;
chk[e.to] = 1;
res.add_edge(now, e.to, e.cost, 1, 0);
self(self, e.to);
}
};
dfs(dfs, root);
return res;
}
// Ο(V+E)
// directed graph from leaf to root
Graph leaf_to_root(int root = 0) {
Graph res(size());
std::vector<int> chk(size(), 0);
chk[root] = 1;
auto dfs = [&](auto self, int now) -> void {
for(auto &e : edges[now]) {
if(chk[e.to] == 1) continue;
chk[e.to] = 1;
res.add_edge(e.to, now, e.cost, 1, 0);
self(self, e.to);
}
};
dfs(dfs, root);
return res;
}
// long long Chu_Liu_Edmonds(int root = 0) {}
};
struct tree_doubling {
private:
std::vector<std::vector<int>> parent;
std::vector<int> depth;
std::vector<long long> dist;
int max_jump = 1;
void build() {
for(int i = 0; i < max_jump - 1; i++) {
for(int v = 0; v < (int)dist.size(); v++) {
if(parent[i][v] == -1)
parent[i + 1][v] = -1;
else
parent[i + 1][v] = parent[i][parent[i][v]];
}
}
}
public:
tree_doubling() = default;
tree_doubling(const Graph &g, const int root = 0) : dist(g.size()), depth(g.size()) {
int n = g.size();
while((1 << max_jump) < n) max_jump++;
parent.assign(max_jump, std::vector<int>(n, -1));
auto dfs = [&](auto self, int now, int per, int d, long long cost) -> void {
parent[0][now] = per;
depth[now] = d;
dist[now] = cost;
for(auto &e : g[now])
if(e.to != per) self(self, e.to, now, d + 1, cost + e.cost);
};
dfs(dfs, root, -1, 0, 0LL);
build();
}
int lowest_common_ancestor(int u, int v) {
if(depth[u] < depth[v]) std::swap(u, v);
int k = parent.size();
for(int i = 0; i < k; i++)
if((depth[u] - depth[v]) >> i & 1) u = parent[i][u];
if(u == v) return u;
for(int i = k - 1; i >= 0; i--)
if(parent[i][u] != parent[i][v]) u = parent[i][u], v = parent[i][v];
return parent[0][u];
}
long long length_of_path(const int u, const int v) { return dist[u] + dist[v] - dist[lowest_common_ancestor(u, v)] * 2; }
int level_ancestor(int v, int level) {
assert(level >= 0);
for(int jump = 0; jump < max_jump and level; jump++) {
if(level & 1) v = parent[jump][v];
level >>= 1;
}
return v;
}
};
struct strongly_connected_components {
private:
enum { CHECKED = -1,
UNCHECKED = -2 };
const Graph &graph_given;
Graph graph_reversed;
std::vector<int> order, group_number; /* at the beginning of the building, 'group_number' is used as 'checked' */
void dfs(int now) {
if(group_number[now] != UNCHECKED) return;
group_number[now] = CHECKED;
for(auto &e : graph_given[now]) dfs(e.to);
order.push_back(now);
}
void rdfs(int now, int group_count) {
if(group_number[now] != UNCHECKED) return;
group_number[now] = group_count;
for(auto &e : graph_reversed[now]) rdfs(e.to, group_count);
}
void build(bool create_compressed_graph) {
for(int i = 0; i < (int)graph_given.size(); i++) dfs(i);
reverse(order.begin(), order.end());
group_number.assign(graph_given.size(), UNCHECKED);
int group = 0;
for(auto &i : order)
if(group_number[i] == UNCHECKED) rdfs(i, group), group++;
graph_compressed.resize(group);
groups.resize(group);
for(int i = 0; i < (int)graph_given.size(); i++) groups[group_number[i]].push_back(i);
if(create_compressed_graph) {
std::vector<int> edges(group, -1);
for(int i = 0; i < group; i++)
for(auto &vertex : groups[i])
for(auto &e : graph_given[vertex])
if(group_number[e.to] != i and edges[group_number[e.to]] != i) {
edges[group_number[e.to]] = i;
graph_compressed[i].emplace_back(group_number[e.to], 1);
}
}
return;
}
public:
std::vector<std::vector<int>> groups;
Graph graph_compressed;
strongly_connected_components(const Graph &g_, bool create_compressed_graph = false)
: graph_given(g_), graph_reversed(g_.size()), group_number(g_.size(), UNCHECKED) {
for(size_t i = 0; i < g_.size(); i++)
for(auto &e : graph_given[i]) graph_reversed[e.to].emplace_back(i, 1);
build(create_compressed_graph);
}
const int &operator[](const int k) { return group_number[k]; }
};
struct heavy_light_decomposition {
public:
std::vector<int> sz, in, out, head, rev, par;
private:
Graph &g;
void dfs_sz(int v, int p = -1) {
par[v] = p;
if(!g[v].empty() and g[v].front().to == p) std::swap(g[v].front(), g[v].back());
for(auto &e : g[v]) {
if(e.to == p) continue;
dfs_sz(e.to, v);
sz[v] += sz[e.to];
if(sz[g[v].front().to] < sz[e.to]) std::swap(g[v].front(), e);
}
}
void dfs_hld(int v, int &t, int p = -1) {
in[v] = t++;
rev[in[v]] = v;
for(auto &e : g[v]) {
if(e.to == p) continue;
head[e.to] = (g[v].front().to == e.to ? head[v] : e.to);
dfs_hld(e.to, t, v);
}
out[v] = t;
}
void build(int root = 0) {
dfs_sz(root);
int t = 0;
head[root] = root;
dfs_hld(root, t);
}
public:
heavy_light_decomposition(Graph &g_, int root = 0) : g(g_) {
int n = g.size();
sz.resize(n, 1);
in.resize(n);
out.resize(n);
head.resize(n);
rev.resize(n);
par.resize(n);
build(root);
}
int level_ancestor(int v, int level = 1) {
while(true) {
int u = head[v];
if(in[v] - level >= in[u]) return rev[in[v] - level];
level -= in[v] - in[u] + 1;
v = par[u];
}
}
int lowest_common_ancestor(int u, int v) {
for(;; v = par[head[v]]) {
if(in[u] > in[v]) std::swap(u, v);
if(head[u] == head[v]) return u;
}
}
// u, v: vertex, unit: unit, q: query on a path, f: binary operation ((T, T) -> T)
template <typename T, typename Q, typename F>
T query(int u, int v, const T &unit, const Q &q, const F &f, bool edge = false) {
T l = unit, r = unit;
for(;; v = par[head[v]]) {
if(in[u] > in[v]) std::swap(u, v), std::swap(l, r);
if(head[u] == head[v]) break;
l = f(q(in[head[v]], in[v] + 1), l);
}
return f(f(q(in[u] + edge, in[v] + 1), l), r);
}
// u,v:頂点 q:更新クエリ
template <typename Q>
void add(int u, int v, const Q &q, bool edge = false) {
for(;; v = par[head[v]]) {
if(in[u] > in[v]) std::swap(u, v);
if(head[u] == head[v]) break;
q(in[head[v]], in[v] + 1);
}
q(in[u] + edge, in[v] + 1);
}
std::pair<int, int> subtree(int v, bool edge = false) { return std::pair<int, int>(in[v] + edge, out[v]); }
};
#pragma endregion
//Segment Tree
//reference materials: <https://www.creativ.xyz/segment-tree-abstraction-979/>, <https://algo-logic.info/segment-tree/>
template <class Monoid>
class SegTree {
using F = function<Monoid(Monoid, Monoid)>;
int n; // 葉の数
vector<Monoid> data; // データを格納する配列
Monoid def; // 初期値かつ単位元
F operation; // 区間クエリ関数
F update; // 点更新関数
// 区間[a,b)の総和。ノードk=[l,r)に着目
Monoid _query(int a, int b, int k, int l, int r) {
if(r <= a || b <= l) return def; // 交差しない
if(a <= l && r <= b)
return data[k]; // a,l,r,bの順で完全に含まれる
else {
Monoid c1 = _query(a, b, 2 * k + 1, l, (l + r) / 2); // 左の子
Monoid c2 = _query(a, b, 2 * k + 2, (l + r) / 2, r); // 右の子
return operation(c1, c2);
}
}
public:
// _n:SegTreeのサイズ, _def:初期値かつ単位元, _operation:クエリ関数,
// _update:点更新関数
SegTree(size_t _n, Monoid _def, F _operation, F _update)
: def(_def), operation(_operation), update(_update) {
n = 1;
while(n < _n) {
n *= 2;
}
data = vector<Monoid>(2 * n - 1, def);
}
// 場所i(0-indexed)の値をxで更新
void set(int i, Monoid x) {
i += n - 1;
data[i] = update(data[i], x);
while(i > 0) {
i = (i - 1) / 2;
data[i] = operation(data[i * 2 + 1], data[i * 2 + 2]);
}
}
// 半開区間[a, b)の区間クエリ
Monoid query(int a, int b) {
return _query(a, b, 0, 0, n);
}
// 添字アクセス
Monoid operator[](int i) {
return data[i + n - 1];
}
// 半開区間[a,b)でx以下の要素を持つ最右位置を返す(二分探索)
// a:半開区間の左端, b:半開区間の右端, x:x以下の要素を求める
int find_rightest(int a, int b, Monoid x) { return find_rightest_sub(a, b, x, 0, 0, n); }
// 半開区間[a,b)でx以下の要素を持つ最左位置を返す(二分探索)
// a:半開区間の左端, b:半開区間の右端, x:x以下の要素を求める
int find_leftest(int a, int b, Monoid x) { return find_leftest_sub(a, b, x, 0, 0, n); }
int find_rightest_sub(int a, int b, Monoid x, int k, int l, int r) {
if(data[k] > x || r <= a || b <= l) { // 自分の値がxより大きい or [a,b)が[l,r)の範囲外ならreturn a-1
return a - 1;
} else if(k >= n - 1) { // 自分が葉ならその位置をreturn
return (k - (n - 1));
} else {
int vr = find_rightest_sub(a, b, x, 2 * k + 2, (l + r) / 2, r);
if(vr != a - 1) { // 右の部分木を見て a-1 以外ならreturn
return vr;
} else { // 左の部分木を見て値をreturn
return find_rightest_sub(a, b, x, 2 * k + 1, l, (l + r) / 2);
}
}
}
int find_leftest_sub(int a, int b, Monoid x, int k, int l, int r) {
if(data[k] > x || r <= a || b <= l) { // 自分の値がxより大きい or [a,b)が[l,r)の範囲外ならreturn b
return b;
} else if(k >= n - 1) { // 自分が葉ならその位置をreturn
return (k - (n - 1));
} else {
int vl = find_leftest_sub(a, b, x, 2 * k + 1, l, (l + r) / 2);
if(vl != b) { // 左の部分木を見て b 以外ならreturn
return vl;
} else { // 右の部分木を見て値をreturn
return find_leftest_sub(a, b, x, 2 * k + 2, (l + r) / 2, r);
}
}
}
};
template <class T>
struct Matrix {
private:
std::vector<std::vector<T>> A;
static Matrix I(size_t n) {
Matrix mat(n);
for(int i = 0; i < n; i++) mat[i][i] = 1;
return mat;
}
public:
Matrix() = default;
Matrix(std::vector<std::vector<T>> &vvec) { A = vvec; }
Matrix(size_t n, size_t m) : A(n, std::vector<T>(m, 0)) {}
Matrix(size_t n, size_t m, T init) : A(n, std::vector<T>(m, init)) {}
Matrix(size_t n, std::vector<T> &vec) : A(n, vec) {}
Matrix(size_t n) : A(n, std::vector<T>(n, 0)) {}
size_t height() const { return A.size(); }
size_t width() const { return A[0].size(); }
inline const std::vector<T> &operator[](int k) const {
return A[k];
}
inline std::vector<T> &operator[](int k) {
return A[k];
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() and m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return *this;
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() and m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return *this;
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
std::vector<std::vector<T>> C(n, std::vector<T>(m, 0));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
for(int k = 0; k < p; k++)
C[i][j] += (*this)[i][k] * B[k][j];
A.swap(C);
return *this;
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while(k > 0) {
if(k & 1) B *= (*this);
*this *= *this;
k >>= 1ll;
}
A.swap(B.A);
return *this;
}
bool operator==(const Matrix &B) {
size_t n = height(), m = width();
if(n != B.height() or m != B.width()) return false;
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
if((*this)[i][j] != B[i][j]) return false;
return true;
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const long long &k) const {
return (Matrix(*this) ^= k);
}
Matrix &operator+=(const T &t) {
int n = height(), m = width();
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] += t;
return *this;
}
Matrix &operator-=(const T &t) {
int n = height(), m = width();
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] -= t;
return *this;
}
Matrix &operator*=(const T &t) {
int n = height(), m = width();
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] *= t;
return *this;
}
Matrix &operator/=(const T &t) {
int n = height(), m = width();
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] /= t;
return *this;
}
Matrix operator+(const T &t) const {
return (Matrix(*this) += t);
}
Matrix operator-(const T &t) const {
return (Matrix(*this) -= t);
}
Matrix operator*(const T &t) const {
return (Matrix(*this) *= t);
}
Matrix operator/(const T &t) const {
return (Matrix(*this) /= t);
}
friend std::ostream &operator<<(std::ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for(int i = 0; i < n; i++) {
os << '[';
for(int j = 0; j < m; j++)
os << p[i][j] << (j == m - 1 ? "]\n" : ",");
}
return (os);
}
T determinant() {
Matrix B(*this);
size_t n = height(), m = width();
assert(n == m);
T ret = 1;
for(int i = 0; i < n; i++) {
int idx = -1;
for(int j = i; j < n; j++)
if(B[j][i] != 0) idx = j;
if(idx == -1) return 0;
if(i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for(int j = 0; j < n; j++) B[i][j] /= vv;
for(int j = i + 1; j < n; j++) {
T a = B[j][i];
for(int k = 0; k < n; k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return ret;
}
};
//ModInt
template <const int &mod>
struct ModInt {
private:
int x;
public:
ModInt() : x(0) {}
ModInt(long long x_) {
if((x = x_ % mod + mod) >= mod) x -= mod;
}
int val() const { return x; }
static int get_mod() { return mod; }
constexpr ModInt &operator+=(ModInt rhs) {
if((x += rhs.x) >= mod) x -= mod;
return *this;
}
constexpr ModInt &operator-=(ModInt rhs) {
if((x -= rhs.x) < 0) x += mod;
return *this;
}
constexpr ModInt &operator*=(ModInt rhs) {
x = (unsigned long long)x * rhs.x % mod;
return *this;
}
constexpr ModInt &operator/=(ModInt rhs) {
x = (unsigned long long)x * rhs.inv().x % mod;
return *this;
}
constexpr ModInt operator-() const noexcept { return -x < 0 ? mod - x : -x; }
constexpr ModInt operator+(ModInt rhs) const noexcept { return ModInt(*this) += rhs; }
constexpr ModInt operator-(ModInt rhs) const noexcept { return ModInt(*this) -= rhs; }
constexpr ModInt operator*(ModInt rhs) const noexcept { return ModInt(*this) *= rhs; }
constexpr ModInt operator/(ModInt rhs) const noexcept { return ModInt(*this) /= rhs; }
constexpr ModInt &operator++() {
*this += 1;
return *this;
}
constexpr ModInt operator++(int) {
*this += 1;
return *this - 1;
}
constexpr ModInt &operator--() {
*this -= 1;
return *this;
}
constexpr ModInt operator--(int) {
*this -= 1;
return *this + 1;
}
bool operator==(ModInt rhs) const { return x == rhs.x; }
bool operator!=(ModInt rhs) const { return x != rhs.x; }
bool operator<=(ModInt rhs) const { return x <= rhs.x; }
bool operator>=(ModInt rhs) const { return x >= rhs.x; }
bool operator<(ModInt rhs) const { return x < rhs.x; }
bool operator>(ModInt rhs) const { return x > rhs.x; }
ModInt inv() {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
std::swap(a -= t * b, b);
std::swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(long long n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
ModInt sqrt() const {
if(x <= 1) return x;
int v = (mod - 1) / 2;
if(pow(v) != 1) return -1;
int q = mod - 1, m = 0;
while(~q & 1) q >>= 1, m++;
std::mt19937 mt;
ModInt z = mt();
while(z.pow(v) != mod - 1) z = mt();
ModInt c = z.pow(q), t = pow(q), r = pow((q + 1) / 2);
for(; m > 1; m--) {
ModInt tmp = t.pow(1 << (m - 2));
if(tmp != 1) r = r * c, t = t * c * c;
c = c * c;
}
return std::min(r.x, mod - r.x);
}
friend std::ostream &operator<<(std::ostream &s, ModInt<mod> a) {
s << a.x;
return s;
}
friend std::istream &operator>>(std::istream &s, ModInt<mod> &a) {
s >> a.x;
return s;
}
};
//Modulo Calculation
static int MOD = 1e9 + 7;
// static int MOD = 998244353;
using mint = ModInt<MOD>;
void main_() {
INT(n);
V<> res(n);
Graph G(n);
V<> a(n - 1), b(n - 1);
REP(n - 1) {
cin >> a[i] >> b[i];
G.add_edge(a[i], b[i]);
}
heavy_light_decomposition hld(G);
Matrix<mint> uni(2, 2);
uni[0] = {1, 0};
uni[1] = {0, 1};
auto op = [&](const Matrix<mint> a, const Matrix<mint> b) {
return a * b;
};
auto upd = [&](Matrix<mint> a, Matrix<mint> b) {
return b;
};
SegTree<Matrix<mint>> ST(n, uni, op, upd);
auto q = [&](int l, int r) {
return ST.query(l, r);
};
auto f = [&](Matrix<mint> a, Matrix<mint> b) {
return a * b;
};
INT(Q);
while(Q--) {
CHAR(c);
if(c == 'x') {
INT(i, x, y, z, w);
int v = max(hld.in[a[i]], hld.in[b[i]]);
Matrix<mint> ne(2, 2);
ne[0] = {x, y};
ne[1] = {z, w};
ST.set(v, ne);
}
if(c == 'g') {
INT(i, j);
auto res = hld.query(i, j, uni, q, f, 1);
print(res[0][0], res[0][1], res[1][0], res[1][1]);
}
}
}
int main() {
int t = 1;
//cin >> t;
while(t--) main_();
return 0;
}
nok0