結果
問題 | No.526 フィボナッチ数列の第N項をMで割った余りを求める |
ユーザー | giyau02 |
提出日時 | 2021-02-07 15:47:18 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 4,853 bytes |
コンパイル時間 | 1,737 ms |
コンパイル使用メモリ | 175,796 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-04 03:53:09 |
合計ジャッジ時間 | 2,352 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> #define rep(i,n) for (int i = 0; i < (n); ++i) #define reps(i,n) for (int i = 1; i <= (n); ++i) #define rrep(i,n) for (int i = (n) - 1; i >= 0; --i) #define rreps(i,n) for (int i = (n); i > 0; --i) #define SZ(x) ((int)(x).size()) #define ALL(x) (x).begin(), (x).end() #define PB push_back #define MP make_pair #define y0 y3487465 #define y1 y8687969 #define j0 j1347829 #define j1 j234892 using namespace std; using ll = long long; using P = pair<int,int>; int mod; // const int mod = 1000000007; // const int mod = 998244353; struct mint { ll x; // typedef long long ll; mint(ll x=0):x((x%mod+mod)%mod){} mint operator-() const { return mint(-x);} mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;} mint operator+(const mint a) const { return mint(*this) += a;} mint operator-(const mint a) const { return mint(*this) -= a;} mint operator*(const mint a) const { return mint(*this) *= a;} mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod mint inv() const { return pow(mod-2);} mint& operator/=(const mint a) { return *this *= a.inv();} mint operator/(const mint a) const { return mint(*this) /= a;} }; istream& operator>>(istream& is, mint& a) { return is >> a.x;} ostream& operator<<(ostream& os, const mint& a) { return os << a.x;} template< class T > struct Matrix { vector< vector< T > > A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {} Matrix(size_t n) : A(n, vector< T >(n, 0)) {}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector< T > &operator[](int k) const { return (A.at(k)); } inline vector< T > &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector< vector< T > > C(n, vector< T >(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << "["; for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } // 故障中?? // T determinant() { // Matrix B(*this); // assert(width() == height()); // T ret = 1; // for(int i = 0; i < width(); i++) { // int idx = -1; // for(int j = i; j < width(); j++) { // if(B[j][i] != 0) idx = j; // } // if(idx == -1) return (0); // if(i != idx) { // ret *= -1; // swap(B[i], B[idx]); // } // ret *= B[i][i]; // T vv = B[i][i]; // for(int j = 0; j < width(); j++) { // B[i][j] /= vv; // } // for(int j = i + 1; j < width(); j++) { // T a = B[j][i]; // for(int k = 0; k < width(); k++) { // B[j][k] -= B[i][k] * a; // } // } // } // return (ret); // } }; int main() { int n, m; cin >> n >> m; mod = m; Matrix<mint> mat(2); mat[0][0] = mat[0][1] = mat[1][0] = 1; mat[1][1] = 0; mat ^= n - 1; Matrix<mint> f(2, 1); f[0][0] = 1; f[1][0] = 0; Matrix<mint> ans = mat * f; cout << ans[1][0] << endl; return 0; }